
STOCHASTIC REAL-TIME OPTIMAL
CONTROL: A PSEUDOSPECTRAL
APPROACH FOR BEARING-ONLY

TRAJECTORY OPTIMIZATION

DISSERTATION

Steven M. Ross, Lieutenant Colonel, USAF

AFIT/DS/ENY/11-24

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT/DS/ENY/11-24

STOCHASTIC REAL-TIME OPTIMAL CONTROL: A PSEUDOSPECTRAL

APPROACH FOR BEARING-ONLY TRAJECTORY OPTIMIZATION

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Steven M. Ross, B.S.A.E., M.S.A.E.

Lieutenant Colonel, USAF

September 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/ DS/ ENY / 11-24

STOCHASTIC REAL-TIME OPTIMAL CONTROL: A PSEUDOSPECTRAL

APPROACH FOR BEARING-ONLY TRAJECTORY OPTIMIZATION

Approved:

Richard G. Cobb, PhD
Chairman

William P. Baker, PhD
Member

Steven M. Ross, B.S.A.E., M.S.A.E.
Lieutenant Colonel, USAF

LtCol Frederick G. Harmon, PhD
Member

Accepted:

M. U. Thomas, PhD
Dean, Graduate School of
Engineering and Management

Date

Ji ll~ II
Date

Date

AFIT/DS/ENY/11-24

Abstract

A method is presented to couple and solve the optimal control and the optimal es-

timation problems simultaneously, allowing systems with bearing-only sensors to ma-

neuver to obtain observability for relative navigation without unnecessarily detracting

from a primary mission. A fundamentally new approach to trajectory optimization

and the dual control problem is presented, constraining polynomial approximations of

the Fisher Information Matrix to provide an information gradient and allow prescrip-

tion of the level of future estimation certainty required for mission accomplishment.

Disturbances, modeling deficiencies, and corrupted measurements are addressed

recursively using Radau pseudospectral collocation methods and sequential quadratic

programming for the optimal path and an Unscented Kalman Filter for the target

position estimate. The underlying real-time optimal control (RTOC) algorithm is

developed, specifically addressing limitations of current techniques that lose error

integration.

The resulting guidance method can be applied to any bearing-only system, such

as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking

to land on power lines for energy harvesting. System integration, variable timing

methods, and discontinuity management techniques are provided for actual hardware

implementation. Validation is accomplished with both simulation and flight test,

autonomously landing a quadrotor helicopter on a wire.

iv

AFIT/DS/ENY/11-24

To my incredible wife and wonderful children, who make life sweet. You bring joy to

everything we do. May God be pleased with our efforts

—Col 3:23.

v

Acknowledgments

The project would not have been possible without the patient instruction and

guidance of my advisor, Dr. Rich Cobb, to whom I am deeply indebted. Thanks

for everything! Your succinct assessment of the first full flight test pretty well sums

it up. Additional thanks is due to my committee members, Dr. Baker and LtCol

Harmon, who were both instrumental in my understanding of optimal control and

the pseudospectral method. Without your help, I’d likely still be staring at Forn-

berg. . . probably upside down.

I also owe a sincere word of gratitude to AFRL/RB for the research funding, as

well as the use of the �AVARI indoor flight facility with the associated crew and

equipment. In addition, I wish to acknowledge the great help of Mark A. Smearcheck

of the AFIT Advanced Navigation Technology (ANT) Center with translating code,

writing the dealer function, and braving launches and recoveries of the quadrotor

during flight control development—not an entirely safe task. . .

The original idea for this project came to me from Dr. John Raquet, a friend

and a mentor. You have been an example to follow, both in the academic arena and

without, and I am indebted for the impact your entire family has had on mine during

this time, my deep thanks. Any time the cousin of the chauffer for the Assistant

Deputy Minister of Interior Decoration in Palau needs a lab tour—I’m there.

Steven M. Ross

vi

Table of Contents

Page

Abstract . iv

Acknowledgments . vi

List of Figures . xi

List of Tables . xv

List of Abbreviations . xvi

List of Symbols . xix

I. Introduction . 1

1.1 Motivation . 2
1.1.1 Bearing-only Target Analysis . 4
1.1.2 Power Harvesting . 6

1.2 Important Semantics . 8
1.3 Assumptions . 10
1.4 Project Summary . 11

1.4.1 Contributions . 12
1.5 Document Outline . 15

II. Related Work . 17

2.1 Optimal Control . 17
2.1.1 Limitations of Optimal Control . 18

2.2 Direct Methods . 19
2.2.1 Transcription and Collocation . 20
2.2.2 Pseudospectral Methods . 21
2.2.3 Real-Time Implementation Methods . 25

2.3 Trajectory Optimization . 27
2.3.1 Localization and Bearing-only Tracking . 28
2.3.2 Dual Control Theory . 32
2.3.3 Trajectory Optimization Shortcomings . 37

III. Problem Description and Modeling . 39

3.1 Segmentation of Control Modes . 39
3.2 Modeling for the Relative Position Problem . 42
3.3 Transformation to Polar Coordinates . 47

vii

Page

IV. Bearing-only Estimation . 51

4.1 The Hybrid EKF . 53

4.1.1 Hybrid Filter Algorithm . 57

4.2 Unscented Kalman Filter . 59

V. Simultaneous Solution of the Optimal Control and
Estimation Problems. 62

5.1 Development of the Fisher Information Matrix from the
Cramér-Rao Lower Bound . 63

5.1.1 Directional Compression and One-Step Ahead
Analysis . 67

5.2 A New Approach . 69

5.2.1 Suboptimal Final Covariance Shooting Method 70

5.2.2 Single-Shot Simultaneous Control and Estimation 75

5.2.3 Information States and Associated Dynamics 78

5.3 Optimal Control Problem Formulation . 81

5.3.1 Avoidance of the Singular Arc . 83

5.3.2 Constraints . 85

5.3.3 Boundary Conditions and Formulation of Final
Covariance Constraints . 87

VI. RTOC Structure—Requirement for Integrated Error
Feedback . 91

6.1 Fast Recursive Open-Loop Control vs. Closed-Loop
Feedback . 91

6.2 Lack of Error Integration in Instantaneous Optimal
Solutions . 94

6.3 Case Study A: Simplified Aircraft Course Planning 95

6.3.1 Addition of Stochastic Disturbances . 97

6.3.2 Error Integration through the Addition of Noise
Estimates into the System Dynamics . 103

6.4 Case Study B: Real-Time Aircraft Attack Planning 105

6.4.1 Pop-up SAM Avoidance Results, No Wind
Condition . 107

6.4.2 Effect of Non-Zero Mean or Time Correlated
Stochastic Disturbances . 110

6.4.3 Integration of Path Error . 112

6.5 Recommended RTOC Structure . 113

viii

Page

VII. RTOC Algorithm and Implementation Tools . 115

7.1 RTOC Algorithm . 115
7.1.1 Initial Condition Validity . 117
7.1.2 Variable Calculation Time . 118
7.1.3 Correction Blending of Path Ends . 120

7.2 Radau Pseudospectral Method . 124
7.2.1 Solving the NLP . 127
7.2.2 Adaptive Grid Refinement . 129

VIII. Quadrotor Vehicle Description and Flight Control
Development . 131

8.1 Vehicle Description . 132
8.1.1 Autopilot Overview . 133

8.2 Flight Control Modifications . 134
8.2.1 Simulation . 135
8.2.2 Vertical Control Channel . 137
8.2.3 Horizontal Control Channels . 139
8.2.4 Heading Control Channel . 141
8.2.5 Automated Flight . 142
8.2.6 System Identification. 144

IX. Results and Analysis . 147

9.1 Simulation Results . 148
9.1.1 Local Minima . 152
9.1.2 Timing and Accuracy . 154

9.2 Flight Test Results . 157
9.2.1 Flight Test Run #1 . 158
9.2.2 Flight Test Run #2 . 162

X. Conclusions and Future Work . 166

10.1 Conclusions . 166
10.2 Future Work . 170
10.3 Summary . 172

Appendix A. Quadrotor Flight Control Model . 173

A.1 Simulink Model . 173

Appendix B. Selected MatlabⓇ Code . 185

B.1 Main Path Planner Loop . 185

ix

Page

B.2 Trajectory Planner GPOPS Interface . 198
Bibliography . 207
Index . 218
Vita . 221

x

List of Figures

Figure Page

1 Bearing-only Systems . 3

2 Ranging with Stereo Vision . 4

3 DARPA Nano-Hummingbird (Photo: AeroVironment) 5

4 Current Tactical sUAS Systems with Monocular Sensors
(AeroVironment) . 6

5 Power Line Harvesting . 7

6 Runge Phenomenon as the Number of Equally Spaced
Nodes is Increased . 23

7 Effect of Specifying Path Length on Localization . 29

8 Optimization of a Robot Path by Exhaustive Search [33] 34

9 Analytic Dual-Control Solution Achieved by Isolating
Each Dimension [57] . 35

10 Optimal Pursuer Trajectory with Constant Range
Decrease for Each Step [9] . 36

11 Conceptual Approach and Flare Segments . 40

12 Body Axis Frame . 42

13 Relative Cartesian Formulation . 44

14 Correction of Deck Pitch Angle for Inertial Measurement 45

15 Polar Formulation . 47

16 Quadrotor Hook Design . 53

17 Iterative Method of Shooting for Final Covariance 72

18 Flightpaths with Different Levels of Required Final
Covariance . 72

19 Profile 1, High Total Speed for Entire Flight . 73

xi

Figure Page

20 Profile 2, High Speed to Good Observation Point,
Followed by a Dwell to Collect Extra Measurements 74

21 Inadequacy of Continuous Measurement Assumption for
Covariance Propagation . 78

22 Ability to Accurately Approximate Covariance with
Information States, Flight Test Run #1 . 80

23 Decision to Follow Initial Optimal Trajectory, or to
Re-solve the Optimal Path from the Current Condition 92

24 Two Degree-of-Freedom Control Scheme . 92

25 Recursive Optimal Control Solution with No
Disturbances, Δt=0.1 Units . 98

26 True Optimal Solution, with Non-Zero-Mean
Disturbance, Δt=0.1 Units . 99

27 Recursive Optimal Solution with Non-Zero-Mean
Disturbance (Homing) . 100

28 Optimal Recursion with the Addition of PI Feedback,
Δt=0.01 Units . 101

29 Control Requirements with and without Feedback 102

30 Recursive Optimal Control using Feedback to Update
Dynamics . 104

31 Recursive Optimal Path Planning Around
Surface-to-Air Threats—No Wind . 108

32 Completion of Recursive Optimal Path Planning
Around Pop-up Surface-to-Air Threats—No Wind 109

33 Wind Disturbance Added to the System . 111

34 Steering Failure with Recursive RTOC Control
Structure in the Presence of Wind . 111

35 Complete Flight Path, Wind Compensated for through
Estimation from Position Feedback . 114

xii

Figure Page

36 RTOC Algorithm Structure . 115

37 Cosine Blending Corrections . 121

38 Quadrotor Helicopter . 131

39 Quadrotor System Schematic . 133

40 Quadrotor Opposing Pitch Propellers . 133

41 Primary Autopilot Loops . 134

42 Need for Vertical Error Integration . 138

43 Maximum Velocity Step Commands . 141

44 Poor Heading Control . 142

45 Automatic Flight Control Development Test . 143

46 Flight Path for Automatic Flight Control Development
Test . 144

47 Simulator without Modification to Match Flight Test
Data . 145

48 Simulator Modified to Match Flight Test Data . 146

49 AFRL/RB �AVIARI Indoor Flight Test Facility 147

50 Instantaneous Trajectory Shape Sensitivity to
Constraints . 150

51 Average Loop Times for Simulation Runs . 154

52 Final Target Estimate Error for Simulation Runs 155

53 Target Position Estimation Error During 1000
Simulation Runs . 156

54 Target Covariance During 1000 Simulation Runs 156

55 Flight Control Work Accomplished in the ANT Center
(Photo: New York Times) . 157

xiii

Figure Page

56 Flight Path, Flight Test Run #1 . 159

57 Commanded vs Actual Flight Path, Flight Test Run #1 160

58 Flight Test Run #1 Snapshots, and Comparison to
Full-Knowledge Path . 162

59 Flight Path, Flight Test Run #2 . 163

60 Commanded vs Actual Flight Path, Flight Test Run #2 164

61 Snapshot Progression of Flight Test Run #2 . 165

62 Quadrotor Just Prior to Hook Engagement . 165

63 Engine Shutdown . 172

64 Quadrotor Simulator Top-Tier . 174

65 Logic to Initiate Hover Mode, Lock in Current Position,
and Compensate for Initial Conditions . 175

66 Ground Station and PIC Controllers . 177

67 Horizontal Control Laws . 178

68 Vertical Control Law . 179

69 Heading Control Law. 179

70 Integrator Management Logic—Integrate, Reset,
Anti-windup, Anti-Chatter (Also Used for y-Axis) 180

71 Subsystem for Switch Logic—Integrate if within Limits,
Else Pull Integrator Back . 180

72 “Sneakback” and Chatter Avoidance Subsystem 180

73 Inner Control Loop (Servo Sensor Board Model with
Simulated Noise Input) . 181

74 Forces and Moments: Motor Dynamics, Thrust, and
Torque Models . 182

xiv

List of Tables

Table Page

1 Non-Zero Analytic Derivatives . 128

2 Simulation Limitations and Initial Parameters . 149

3 Flight Test Parameters and Results . 158

4 Simulator Initialization and Constants . 183

xv

List of Abbreviations

Abbreviation Page

AFIT Air Force Institute of Technology . 131

AFRL Air Force Research Laboratory . 6

ANT Advanced Navigation Technology (Center) 131

CRLB Cramér-Rao Lower Bound . 27

cg Center of Gravity . 42

DCM Direction Cosine Matrix . 46

DOP Dilution of Precision . 66

DRA Defense Research Associates . 6

DoD Department of Defense . 6

EKF Extended Kalman Filter . 52

FIM Fisher Information Matrix . 27

FOV Field-of-View . 10

GPM Gauss Pseudospectral Method . 21

GPS Global Positioning System . 8

HARM High-Speed Anti-Radiation Missile . 3

HEFK Hybrid Extended Kalman Filter . 15

INS Inertial Navigation System . 10

IRSTS Infrared Search and Tracking System . 3

KKT Karush-Kuhn Tucker . 22

LGL Legendre-Gauss-Lobatto . 22

LGR Legendre-Gauss Radau . 22

LG Legendre-Gauss . 22

xvi

Abbreviation Page

LOS Line of Sight . 3

LPM Legendre-Gauss-Lobatto Pseudospectral Method 21

LQE Linear Quadratic Estimator . 18

LQG Linear Quadratic Gaussian . 36

LQR Linear Quadratic Regulator . 18

MIMO Multiple-Input, Multiple-Ouput . 18

MPC Model Predictive Control . 30

NLP Non-Linear Programming . 20

NOC Neighboring Optimal Control . 120

PD Proportional-Derivative (Control) . 137

PI Proportional-Integral (Control) . 141

PLUS Power Line Urban Sentry . 6

PSM Pseudospectral Methods . 12

PWM Pulse Width Modulation . 133

pdf Probability Density Function . 59

RB Air Vehicles Directorate . 147

RPM Radau Pseudospectral Method . 21

RPV Remotely Piloted Vehicle . 8

RTOC Real-time Optimal Control . 12

SPKF Sigma-Point Kalman Filter . 59

SQP Sequential Quadratic Programming . 20

sUAS Small, Unmanned Aerial System . 6

TCP Transmission Control Protocol . 123

xvii

Abbreviation Page

TPBVP Two-Point Boundary Value Problem . 1

UAV Unmanned Aerial Vehicle . 8

UKF Unscented Kalman Filter . 13

UT Unscented Transformation . 12

�AVIARI Micro Air Vehicle Integration and Application
Research Institute . 145

xviii

List of Symbols

Symbol Page

0n Zero Matrix, n× n . 47

C Path Constraints . 82

Cx̃ State Path Constraints . 83

Cu Control Path Constraints . 83

ci Basis Function Weighting Constant . 21

D Differentiation Matrix . 125

ep Proportional Path Error . 101

F Matrix of Dynamic Constraint Functions Evaluated at
Collocation Points . 126

f State Dynamics . 82

H Measurement Function Jacobian . 66

Hy Polar Measurement Function . 48

ℋ Hamiltonian . 25

ℍ Heaviside Step Function . 83

h Measurement Function . 44

In Identity Matrix, n× n . 47

퓘 Fisher Information Matrix . 66

Ixx, Iyy, IzzMoments of Inertia . 136

J Performance Index . 23

K Kalman Gain . 58

KUKF Unscented Kalman Filter Gain . 61

L, M, N Body Axis Moments . 136

xix

Symbol Page

Li Lagrange Polynomial Basis Function . 125

퓛 Lagrange Cost Functional . 82

M Observability Grammian . 67

N Number of Collocation Nodes . 124

P State Covariance Matrix . 57

Py Polar State Covariance Matrix . 58

Pxxmax Final Covariance Limit, x-direction . 150

PN Legendre Polynomial, Degree N . 124

p Likelihood Function . 64

p, q, r Body Axis Angular Velocities . 136

Qgust Simulated Wind Noise Strength . 110

Q Process Noise Strength . 47

R Residual Error Matrix . 130

R Covariance . 45

rcamx Camera Lever Arm Coordinate, xb-Axis Direction 46

S Propagation Jacobian . 55

s Polar Propagation Equation . 55

sx Transformation Function, Polar to Cartesian . 54

sy Transformation Function, Cartesian to Polar . 54

t, t0, tf Time (Continuous), Initial, Final . 22

tapp Expected Time at Approach Point . 122

tbl Length of Blending Segment . 122

tk Time (Discrete) . 45

xx

Symbol Page

tpercℎ Expected Time at Perch Point . 158

t̄i Midpoint Time Between Collocation Points . 130

ULGR
i Matrix of All Controls at Every Collocation Point 126

Ū Matrix of All Controls at Every Discretization
Mid-Point . 130

U Set of Admissible Controls . 26

u Control Vector . 46

uy Polar Control Vector . 48

u∗ Optimal Control Vector . 84

u, v, w Body Frame Velocities . 137

ux Navigation Frame Control Component, x-Axis
Direction . 46

Vac Total Velocity (SAM Avoidance Case Study) . 96

v Navigation Frame Velocity Vector . 43

vx, vy, vz Navigation Frame Velocity Components . 43

vxmin , vxmaxNavigation Frame Velocity Limits, x Component 43

vmax Total Velocity Limit . 43

Wu Control Weighting Matrix . 83

W
(i)
c Sigma-Point Covariance Weight . 60

W
(i)
m Sigma-Point Mean Weight . 60

wk Process Noise Vector . 47

w Wind (SAM Avoidance Case Study) . 98

wi Quadrature Weight . 23

wgust Simulated Wind Gust . 110

xxi

Symbol Page

wt Suboptimal Time Weight . 70

wx, wz Suboptimal Direction Weights . 70

ŵ Wind Bias Estimate . 103

X Matrix of All States at Every Discretization Point 126

XLGR Matrix of All States at Every Collocation Point 126

X̄ Matrix of All States at Every Discretization Mid-Point 130

x Navigation Frame Coordinate Vector . 43

xac(t) State Vector (SAM Avoidance Case Study) . 95

xb Body Frame Coordinate Vector . 42

xr Relative Coordinate Vector . 43

xt Target Coordinate Vector . 43

x(KF) Kalman Filter State Vector . 47

x∗i Optimal State Trajectory from Path Planner, Epoch i 57

x̂app Approach Point Coordinate Estimate . 116

x̂+
rk

Relative State Vector Estimate, Time tk, After Update 61

x̃ Augmented State Vector . 81

xapp offset Offset to Body Frame Origin from Approach Point 86

x, y, z Navigation Frame Coordinates . 43

xb, yb, zb Body Frame Coordinates . 42

x̂t, ẑt Estimated Target Coordinates . 49

y Polar State Vector . 48

y(KF) Polar Kalman Filter State Vector . 48

Z(i)−
k Sigma-Point Vector Transformed to Measurement

Space . 60

xxii

Symbol Page

Z Measurement Random Variable . 64

zmin, zmax Altitude Limits . 49

ẑ−k Measurement Space Sigma-Point a priori Mean 60

� Sigma-Point Spread Parameter . 60

� Total Measurement Angle . 44

�image Image Measurement Angle . 44

Γ Mayer Cost Function . 82

 Boundary Conditions . 82

Δt Time Step . 47

Δtcalc Inclusive Loop Time (RTOC, Estimation, Delay) 87

Δtmeas Expected Measurement Interval . 61

� Delta Function . 110

�kj Kronecker Delta Function . 45

� Measurement Sample . 64

�gust Simulated Wind Input Noise . 110

�k Measurement Noise . 45

� Pitch Angle . 44

� Sigma-Point Tuning Parameter . 60

Λ(t, t0) Relative State Propagation Matrix, from t = t0 to t 55

� Costate Vector, Lagrange Multipliers . 25

� UKF Scaling Parameter . 59

� Distribution Tuning Parameter . 61

Ξcor Position Correction Matrix . 122

xxiii

Symbol Page

Ξ0→1 Position Correction Cosine Wave Vector (Smooth-Fast) 122

Ξ0→1flare Position Correction Cosine Wave Vector
(Smooth-Smooth) . 123

�k Measurement Model . 45

�i Information State . 79

� Range . 48

�i Range to SAM i . 106

�� Measurement Angle Standard Deviation . 67

&(t, t0) Cartesian Position Change from t0 to t . 55

�, �0, �f Transformed Time Variable, Initial (-1), Final (1) 22

�k Collocation Point . 124

Φk+1,k State Transition Matrix, tk to tk+1 . 66

� Bank Angle . 136

�i Basis Function . 21

�p Polynomial Basis Function . 125

X (i)−
k Sigma-Point Vector, ith Column, Time tk, Prior to

Update . 59

 Heading Angle . 136

 c Commanded Heading . 101

 fb Heading Control Feedback (SAM Avoidance Case
Study) . 101

 ∗e Heading Error Between True Optimal and Calculated
Optimal Solutions (SAM Avoidance Case Study) 100

 ̂∗ Estimate of Optimal Heading . 104

Ω Finite Time Interval . 89

xxiv

STOCHASTIC REAL-TIME OPTIMAL CONTROL: A PSEUDOSPECTRAL

APPROACH FOR BEARING-ONLY TRAJECTORY OPTIMIZATION

I. Introduction

“The difficulty is designing machines that can approximate the remark-
able human ability to reason and make decisions in an environment of
uncertainty and imprecision.” -Lotfi A. Zadeh [120]

T his dissertation addresses a problem at the crossroads of the fields of esti-

mation and optimal control. For a basic two-point boundary value problem

(TPBVP), optimal control can be thought of most simply as finding the “best” path

and control to get from “here” to “there.” On the navigation side, optimal estimation

can be thought of as finding the best guess of a target location given a set of imperfect

measurements. Present levels of technology are excellent at doing both. . . individually.

But what is the best path to get to a target with a location that is not well known? If

the quality of the target estimate can be improved by varying the path taken, what is

the optimal path that will accomplish a primary mission, while maneuvering enough

to get the estimation quality required for success in that mission? This research

seeks an automated method to find that solution quickly, fast enough for real-time

guidance, and robust enough for the uncertainties and disturbances of real life.

The human mind is an amazing optimization machine that solves these problems

regularly. Every control decision, from the way you drive home from work to the way

you hit a baseball, is made in an optimal manner. We continually try to maximize or

minimize some performance index of time, effort, power, accuracy, or a myriad of other

1

considerations—often simultaneously. In the world of control, a modern computer can

accomplish a task far more precisely, but cannot compare in ability to deal with a

wide range of uncertain inputs and incomplete information. In the estimation realm,

we have finely-honed computer filtering algorithms and data processing techniques

to “squeeze out” every piece of useful sensor information provided, but our machines

lack the human’s intuitive feel for how to move to make that information better. The

ability to sense what we are missing—and how to get it—causes us to tilt our ear, to

lean around a corner, and to slow down before a blind intersection. Improving the

information isn’t the primary mission, but it is done “enough” to meet the needs of

a higher goal.

The goal of this research is to provide this capability to an autonomous controller,

capable of being used in real-time, with the recognition that what is optimal in a

stochastic environment is not only a function of “What do I want?” but also of

“What do I know now, and how well do I know it?” A guidance system should be

able to figure out what information is still needed for success, and be able to produce

the path and control to get it—taking as little as possible away from the primary

mission.

1.1 Motivation

The ability to maneuver in relation to current levels of target knowledge will

directly benefit systems in which estimation performance is dependent upon the ge-

ometry of the constellation of measurements that has been received. This research

focuses on path guidance to land small aircraft on power lines using a single camera

for a sensor. Range to the target must be found through maneuver, as is the case for

several examples of bearing-only systems that would benefit from the same type of

2

guidance, such as submarines using passive sonar, high-speed anti-radiation missiles

(HARM), or systems with infrared search and tracking systems (IRSTS), shown in

Figure 1.

(a) Seawolf Submarine (Photo:
U.S. Navy)

(b) IRSTS (Photo: MILAVIA)

(c) HARM Missile (Photo:
FAS.org)

(d) Aeryon Scout Quadrotor
(Photo: Aeryon Labs)

Figure 1. Bearing-only Systems

Each of these systems relies on a bearing-sensor to track targets as part of a

greater mission. The HARM system receives bearing information from the electronic

emissions of a ground radar site and must determine a path to hit the site with

maximum energy while respecting its own sensor limitations [28]. Motion away from

the target line of sight (LOS) increases the fidelity of the target position estimate,

but can simultaneously decrease the missile’s energy.

Submarines (and other Naval vessels) do almost all of their target motion analysis

passively [43], with bearing-only sonar tracking algorithms very similar to the optical

tracking problem of the IRSTS. In both cases, choosing to use active ranging (via

sonar or radar, respectively), while much more accurate, gives away the presence

3

(and interest) of the sensor, and its position. Passive ranging requires maneuver, and

current submarine techniques to accomplish it haven’t significantly changed since the

1950s—a turn is made orthogonal to the target LOS and that heading is held long

enough to produce a bearing fan of measurements suitable for algorithms such as

Ekelund or Spiess ranging [104], followed by one extra turn to eliminate ambiguities.

A maneuver that would do this while closing to attack range, or while increasing

standoff distance is left to the “seat of the pants” intuition of the commander [43].

Ideally, an automated guidance system could integrate the tools of optimal control

and bearing-only target analysis to maneuver the submarine in such a manner that

it achieves exactly the minimum target certainty required for the fire-control system

precisely at the time the submarine reaches maximum torpedo range.

1.1.1 Bearing-only Target Analysis.

Bearing-only target analysis is a classic estimation problem, and exists in appli-

cations from basic triangulation in land surveying to missile detection systems [42].

The inability to sense range with each measurement, combined with the inherent non-

linearity of the problem, make estimation of a target location, or source, problematic.

One common solution is to take measurements from non-collocated sensors, as is done

with stereo vision, in Figure 2.

Sensor Error

Target
LocationBaseline

Figure 2. Ranging with Stereo Vision

4

The limitation to this technique is that the size and shape of the uncertainty

“bubble” around the estimate is a function of the baseline between the sensors. The

farther the target, the more baseline is required for resolution. Systems such as small

aircraft with optical cameras and fighter jets with IRSTS lack the physical dimensions

for enough baseline to make stereo vision effective at their respective ranges of interest.

For a monocular system, range estimation is analogous, but the sensor must phys-

ically be moved orthogonal to the target LOS (or be in a position to observe orthogo-

nal target motion), artificially creating enough baseline to enable triangulation. This

motion comes at the expense of the primary mission, unless the entire purpose is

localization of the target. Depending on the accuracy of the sensor, a wide range of

aspect angles may be required for a reasonable range estimate. If other, more accu-

rate, ranging sensors are available, such as laser range finders, radar, or active sonar,

these would obviously be preferred. However, many systems are limited by stealth

considerations, physical dimensions, or payload capacity to a single, passive bearing

sensor. One such system is DARPA’s 19 gram Nano-Hummingbird with a monocular

camera shown in Figure 3.

Figure 3. DARPA Nano-Hummingbird (Photo: AeroVironment)

5

1.1.2 Power Harvesting.

The Department of Defense (DoD) has dedicated an unprecedented amount of time

and energy into research of small, unmanned aerial systems (sUAS) in recent years

for a variety of purposes [109]. The ability to move a sensor, or other small payload,

to a particular site for surveillance and other purposes provides great capabilities,

particularly if it can be done undetected [31]. The trend of recent design has been

to reduce the size of these vehicles dramatically. The Nano-Hummingbird is a great

example, but current tactical systems are on the order of the Wasp and the RavenⓇ B,

with approximate wingspans of 72-cm and 140-cm, respectively, shown in Figure 4.

(a) Wasp III (b) RavenⓇ B

Figure 4. Current Tactical sUAS Systems with Monocular Sensors (AeroVironment)

Obviously, sensor quality and availability decrease commensurate with the ve-

hicle’s size and weight. In addition, smaller systems have lower flight speeds and

greatly decreased range. Compounding the problem is the obvious lack of payload

capacity. For electric motors, battery life is severely limited by allowable payload.

This translates into short range assets that have limited persistence.

One possible method of significantly extending both range and station time is

energy harvesting off of available power lines during a mission [17]. The Power Line

Urban Sentry (PLUS) program at the Air Force Research Laboratory (AFRL) with

the work of Defense Research Associates (DRA) has been successful with recharging

6

batteries through induction, by clamping around medium-sized power lines, such as

you would see in a typical neighborhood [98].

This technique has powered observation sensors with a camera, modem, and server

board, allowing the camera to be accessed and controlled by a common iPhone. The

concept is to extend this technology to sUASs, hanging them from a power line until

recharged as in Figure 5.

(a) Camera Powered by Passive Induction
(Photo: DRA)

(b) Conceptual Future Use (Photo: Bob For-
nal)

Figure 5. Power Line Harvesting

The observation camera technology is at the early fieldable stages, but currently

the weight of an inductor clamp large enough to recharge a sUAS sized battery in a

reasonable time is problematic, given the extremely limited available payload capac-

ity of small aircraft. In addition to battery development, future advances in inductive

technology, such as recharging pads for cell phones, will almost certainly open har-

vesting as a viable future option for power regeneration. Even now, the technology

exists to design a “home base” power station, attached the same way as the current

sensor suites. A sUAS could be used locally from the position of the base, such as

flying preprogrammed loops for border security, etc., and could return to the base for

power replenishment. Multiple vehicles could cycle off of the power line for continuous

coverage.

7

There is a near-term requirement, therefore, for a control algorithm to find, ap-

proach, and perch on power lines. The critical difficulty in this is the measurement

of the relative position between the sUAS and the power line itself. AFRL’s research

has shown that avoiding the issue by merely tracking the angle to the power line

and running into it at flight speed (with a hook system designed for that purpose) is

overly abrupt and can lead to failure of the vehicle [17]. Morphing of the wings in

an attempt to decrease the stall speed has been attempted [116], but the thought of

automating this process only accentuates the great need for accurate relative position

data between the sUAS and the intended landing point. As this research is extended

from perching on power lines to rooftops and window ledges, the price for a “miss”

goes up, and the requirement for accurate relative data becomes even greater. Using

preset landing coordinates is ineffective and removes too much flexibility from the

system. Though we have made great strides in GPS receiver miniaturization and ac-

curacy, mensurated coordinates of every power line out there are simply not available.

In theory, we could use space-based assets and extensive mission planning to get an

exact point to fly to, but experience from attempts at open-loop control for relative

taskings strongly suggests that this is not a feasible solution. Real-time feedback

of the relative position must be made available, and in the bearing-only sensor case

where range is important, this must be attained through manipulation of the path.

1.2 Important Semantics

Throughout the document, the following notation and definitions are used:

∙ The Air Force is making an effort to move toward the use of the acronyms sUAS

and RPV (Remotely Piloted Vehicle) and away from the more familiar general

term UAV (Unmanned Aerial Vehicle). Since the power line scenario is specific

8

to the sUAS, that term will be used, with the understanding that the algorithm

itself could be applied to any UAV, obviously on a different scale and with a

different final mission.

∙ The terms path and trajectory are synonymous.

∙ The term observer is used to describe a system that plans and tracks a tra-

jectory to produce sufficient observability of a target location to accomplish a

mission. In the power line landing context, the term observer will be used inter-

changeably with the term “vehicle,” and refers to the entire unmanned system,

including the sUAS platform and the associated sensors.

∙ The target, or source, is the object whose location the observer is attempting

to estimate. Note that the target is not necessarily the maneuvering goal of the

observer (i.e. the submarine needs to ascertain the position of a target contact,

but is maneuvering to an attack position relative to it, not to the target itself).

For the landing scenario, the term target is synonymous with power line (for

the true application) or wire (for the flight test).

∙ The approach point is the desired maneuver end point of the observer during

the segment of the mission directed by the path planner, which is the algorithm

that determines the optimal trajectory for the given conditions. The prescribed

level of certainty in the target position must be attained prior to reaching the

approach point.

∙ The term localization will be used to denote the specific case where bearing-

only tracking techniques are applied to a target known to be static.

∙ Discrete time steps of a state x(t = tk) are abbreviated xk where it will not

cause confusion. Context must be used to determine whether the length of

9

the step is Δt (for the control station and autopilot), Δtmeas (for measurement

updates �k, �k+1), or Δtcalc for epochs. The term epoch is reserved for one

step of the path planner, which produces a complete time history of the states

and controls in each solution. For instance, the phrase x0k+1
= xk(t + Δtcalc)

means that the initial state to be used in the path planner at epoch k + 1 is

determined by propagating the state time history received at epoch k forward

to time t+Δtcalc. Values at the same time step, but calculated before and after

a measurement update has been incorporated are delineated by x−k , x
+
k .

1.3 Assumptions

This project assumes the existence of an observer vehicle with an indigenous nav-

igation capability from a system such as GPS, INS, or some sort of image processing

such as optical flow [54, 112], sufficient to determine its inertial position relative to

constraining borders, be they terrain, walls, an altitude ceiling, political boundaries,

etc. The borders will be observed as position limitations, but the observer is assumed

to have control authority to move freely within the borders, respecting velocity and

acceleration constraints (obstacle avoidance is not considered). The observer has

available processing power for estimation and real-time optimization.

The observer is also assumed to be equipped with a bearing sensor capable of

identifying the target and producing an angular measurement to it, and the target

is assumed to be initially within the sensor’s field-of-view (FOV). The measurements

are delayed, but time tagged, and corrupted by uncertainties in the sensor and the

vehicle orientation. Specifically for the power line scenario, it is assumed that the

vertical angle to the power line can be found with a line detection algorithm operating

on sequential images from an optical sensor. It is assumed that the power line is

10

horizontal, and that the angle along the wire is not observable. Future research could

certainly expand on this with allowance for utility pole identification, stadiametric

ranging, sag analysis, or other considerations. With no observable lateral changes,

there is no benefit to flight parallel to the wire, and the optimal trajectory becomes

planar, maneuvering in the vertical to increase observability. The submarine variant

of the problem can also be considered planar, only horizontal. In this case, there

is some observability that could be gained from vertical motion, but the realizable

benefit from the restricted ability to maneuver in the vertical is small at the long

horizontal distances typical for submarine contacts that are still un-ranged.

1.4 Project Summary

This dissertation proposes a new method of approaching the bearing-only trajec-

tory planning problem that enables simultaneous consideration of the optimal control

problem and prescribed final estimation requirements, overcoming the typical limita-

tions of previous approaches. The trajectory planning goal is to provide an optimal

path and control for arrival at a point, or set of points, offset relative to a target po-

sition, the location of which must be determined to a predefined certainty by varying

the engagement geometry while receiving stochastic, delayed angle measurements. In

addition to allowing a general cost function, the method treats required final direc-

tional covariance in the target estimate as a constraint, optimally considering the

observability requirements of the bearing-only sensor, without wasting maneuver ef-

fort beyond the minimum necessary for accomplishment of tasks such as landing or

weapons employment.

In order to be implemented beyond theory, considerations of noise and flight dis-

turbances mandate the need for the trajectory planning capability to be part of an

11

on-line system with feedback, made fast and simple enough to be applied iteratively

in combination with an estimation filter using own-ship position and target bearing

measurement data. A real-time optimal control (RTOC) system is designed using an

Unscented Transformation (UT) based filter for target estimation coupled with an ef-

ficient pseudospectral method (PSM) algorithm designed around the same principles.

System stability and precision are validated through Monte Carlo-style simulation.

An existing quadrotor helicopter is then extensively modified to allow application of

the RTOC system, and effectiveness and feasibility are verified through flight test,

guiding the quadrotor to a wire and landing upon it. Several integration techniques

are created and presented that should be considered in an effort to apply a RTOC

system to actual hardware.

1.4.1 Contributions.

Several significant contributions to the field of science have been made in the

accomplishment of this work:

∙ The most significant contribution is a fundamentally new method of approach-

ing the bearing-only trajectory optimization problem. A myriad of small varia-

tions have been applied to this problem, all of them centering around optimiz-

ing some scalar information metric. This work provides the ability to achieve

a predetermined final certainty in a target estimate, while simultaneously ac-

complishing a primary mission beyond pure localization. Prescribing a final

certainty level as a constraint allows any general cost function to be used for

primary guidance of the vehicle, as most appropriate for a given system and

its primary mission, while guaranteeing that the physical certainty required

for the navigation needs of that mission will also be met. The method does

not suffer from the problematic loss of directional information caused by scalar

12

compression of an information metric in other methods. The key enabler for

this technology is the ability to estimate the effects of discrete measurement

updates with information states in a polynomial space, allowing propagation

of geometric certainty information in relation to time within the context of the

optimal control problem.

∙ This work also contributes a physically realizable RTOC algorithm for a system

with moderate dynamics using pseudospectral methods that are tailored to have

a coherent effort with an estimation filter. The same underlying principles of the

Unscented Kalman Filter (UKF) designed for this work are incorporated into

the optimal control problem. Specific computational issues, such as singularity

avoidance, are addressed in order to allow a method for a PSM to be used to

control a vehicle to an unknown final boundary condition. Beyond simulation,

this work fleshes out all of the details from concepts and theory to hardware

implementation.

∙ The application of pseudospectral methods is new to the field of real-time op-

timal control, and has seen little, if any, application beyond simulation for sys-

tems with moderate dynamics. Current trends in the RTOC community include

speeding up an outer trajectory planning loop to the point where control can

be applied in a recursive, open-loop manner, re-planning the optimal path fast

enough to achieve the equivalent of optimal feedback control. While effective in

the simulation environment, research for this project highlighted significant lim-

itations in these techniques. Removal of the classical feedback concepts, while

tempting, loses the insights gained from integration of path error, making the

system unable to properly respond to non-zero mean disturbances. A return

to the classical application of optimal control with an error feedback loop is

proposed, with the addition of an error bias feedback loop to the path planner

13

enabling the system to respond to a stochastic environment in an optimal man-

ner. This method should be adopted as the industry standard for application

of future RTOC algorithms, independent of the numeric solution method used.

∙ A significant advantage in RTOC is provided through allowing an unknown

calculation time for the optimization cycle, making use of new solutions as soon

as they are available. The necessary implementation tools of tip/tail blending

and variable-rate loop integration are developed. Though more complex, the

optimal path update rate is increased markedly, greatly improving the flexibility

and response to uncertainty for any RTOC system.

∙ Finally, the algorithm produced also provides the community with a planning

tool likely to be needed as power line landings become more of a possibility.

Recognizing that some very small systems will not have the computational

capacity and energy for RTOC, this tool provides a way to find and extract

the key characteristics of the optimal path. The general shape and decision

points of the solution will vary from system to system by dynamics, scale, and

speed limitations. By using the simulation provided herein, the trajectories may

be run for the specifics of a particular system, and heuristics can be built which

mimic the optimal solution without the computational burden.

Application of this technology to modern systems translates into a first shot op-

portunity for a submarine, a higher end-game energy for a HARM, or the ability to

land a sUAS on a power line for energy harvesting.

14

1.5 Document Outline

All of the major concepts involved in this research are presented in this document,

to a level of detail that should allow reconstruction, if desired. Chapter II presents

the relevant current state of the art in the field of optimal control. Limitations of

computation time and inadequacy for stochastic problems are discussed, and direct

methods of transcription and collocation are detailed as potential techniques to speed

up the process enough for real-time implementation. Past efforts in the area of trajec-

tory optimization are covered, as well as attempts to combine trajectory optimization

with optimal control in dual control methods. Real-time efforts and limitations are

discussed throughout the chapter.

Chapter III describes the details of the specific land-on-a-wire problem, and scopes

the region of interest. The most relevant coordinate systems used and the dynamics

and measurement models are introduced in the Cartesian system, and transformed

into the polar coordinate system for use with the hybrid Extended Kalman Fil-

ter (HEFK) and the shooting method later developed. Chapter IV addresses the

bearing-only estimation problem, and develops the HEKF and an Unscented Kalman

Filter as estimation options. The HEKF was used for a large portion of the research

and is available for future users who desire the final covariance limitations in the polar

format without additional non-linear transformations. The filter that was selected for

the final flight tests was based on the Unscented Transformation.

In Chapter V, the question is addressed of how to get the information from the

discrete measurement updates, and the geometry from which they were taken from,

encapsulated into a form which an optimal solver could use to determine how to

adjust an optimal path. Information states are developed that are polynomial ap-

proximations of elements in the Fisher Information Matrix. These are used to allow

the optimal solver to have an information gradient for how to change the path, and to

15

allow application of the final required covariance as a boundary condition. From this,

the optimal control problem is constructed with the information states augmenting

the system model.

With a single-shot solution in hand, Chapter VI focuses on the structure of RTOC

implementation, specifically addressing a current RTOC practice of equating recursive

open-loop solutions with feedback control when the solutions are available fast enough.

Case studies are provided as counter examples, and a structure that is more effective

in the face of real-world biases and time-correlated disturbances is presented.

Chapter VII implements that structure in the full RTOC algorithm used for the

land-on-a-wire problem, addressing hardware considerations such as discontinuities

and timing. Use of a variable calculation time is shown to increase system flexibil-

ity and responsiveness by increasing the optimal solution update rate, and poten-

tial issues with doing this are managed. Radau Pseudospetral Methods are used to

transcribe the continuous optimal control problem into a non-linear programming

problem, and adaptive grid refinement is used to further increase the solution speed.

Chapter VIII describes the actual quadrotor helicopter system, as well as the

flight control modifications required to enable the actual flight test. The results of

the flight tests are presented with analysis in Chapter IX, along with results from a

Monte Carlo-style simulation that looks at robustness and accuracy. The conclusions

drawn from the results, as well as recommendations for future work, are found in

Chapter X. For reconstruction, the flight control simulator Simulink model is pre-

sented in Appendix A, and selected portions of the MatlabⓇ code for the RTOC

algorithm that may be of particular interest are presented in Appendix B.

16

II. Related Work

T he primary focus of this dissertation is the design of a real-time optimal con-

trol algorithm capable of commanding and updating an optimal path for a

sUAS to perch on a wire with bearing-only measurement data, considering current and

required uncertainty levels in the definition of optimality. Making the system imple-

mentable requires the integration, application, and expansion of existing knowledge

from several broad and often overlapping areas, including optimization, non-linear

flight dynamics, aircraft control, navigation, and estimation. Many areas where work

was required that is not expected to be contributory to the body of knowledge are

not highlighted in this chapter.

2.1 Optimal Control

Optimal control and trajectory optimization have been studied for centuries. In

essence, it is the search for the set of control signals that will minimize (or maximize)

some performance criterion while satisfying some physical constraints [66]. The roots

of optimal control rest in the Calculus of Variations, formulated by giants such as

Bernoulli, Newton, Leibniz, Euler, and Lagrange [40]. Great strides occurred in the

1800’s, when Hamilton and Jacobi formalized the concept of a differential equation

governing the partial derivative of an objective function with respect to the parameters

of a family of extremals (we’d call them states). Legendre, Clebsh, and Weierstrass

followed by refining the necessary conditions for a true optimal solution, and by the

early 1900s, Bolza and Bliss had built the structure of the Calculus of Variations to

its present form [12].

17

As is usually the case, technological advancements opened up new needs for engi-

neering solutions, and the space race of the 1950s brought the next jump in optimal

control with the work of Soviet Lev Semanovich Pontryagin [89], with his maximum

principle, and American Richard Bellman [3], known best for his work in dynamic

programming. As control systems became more digital and computers more prolific,

Rudolf Kalman hugely expanded the practical applicability of optimal theory when he

found an optimal state feedback gain through solving the backward Riccati equation

on an infinite time horizon for Multiple-Input, Multiple-Ouput (MIMO) systems [60].

2.1.1 Limitations of Optimal Control.

Kalman’s feedback gain process, later dubbed the Linear Quadratic Regulator

(LQR), and its sister, the Linear Quadratic Estimator (LQE), were especially sig-

nificant [2]. For linear systems (or reasonably linearizable systems), a solution for

optimal feedback was now practical and realizable, with appropriate attention to

robustness [14].

Unfortunately, an optimal feedback solution is often not available for systems with

complexities such as non-linear problem spaces, intricate cost functions, time-varying

physical constraints, or problems where knowledge of the objective is dependent on

the path chosen (such as simultaneous trajectory optimization and localization). In

this case, the basic practice is to numerically solve the optimal control problem in

an open-loop sense a priori, assuming the boundary conditions that will exist when

the control is applied. The optimal control is then applied and disturbances are

rejected by feeding back the error between the expected optimal path and the current

position [62]. Stability and feasibility are maintained if the system remains “close

enough” to the nominal path.

18

For cases where the exact state at the time the control will be needed is not fore-

known, and for cases where disturbances, model inaccuracies, or noisy measurements

cause large deviations from the optimal path, an ability to recursively solve the prob-

lem with new information is intuitively desirable. The drawback, historically, has

been the extensive calculation time required to numerically solve an optimal control

problem. Methods dubbed shooting, multiple shooting, genetic algorithms, simulated

annealing, particle swarm optimization, and others have been used with varying speed

and numerical stability. The most promising techniques have included parameteriza-

tion of the problem into a finite solution space, as is accomplished in direct methods.

2.2 Direct Methods

Optimal control methods can be generally categorized into either direct or indi-

rect [5]. Indirect methods involve determining extremals with the Hamiltonian and

first-order optimality conditions [13, 66]. While these methods offer great insight into

the problem, they have several drawbacks. First, indirect methods cumulatively eval-

uate the objective function (and its gradient) over the entire trajectory, as opposed

to direct methods which do this only at several points. Direct methods, therefore,

have more information on where to apply changes to the initial guess, resulting in

larger radii of convergence than with indirect methods, which require a good (and

generally nonintuitive) initial guess of both states and costates [7]. In addition, if the

problem is constrained, the indirect method requires breaking the problem into con-

strained and unconstrained arcs, which may not be known a priori [5]. In addition,

indirect methods are often extremely sensitive to problems with unknown boundary

conditions [93].

19

Direct methods are more robust to errors in the initial guess, more computationally

efficient, and apply to a larger range of problems. Euler was the first to create what

we now call the direct method of finite differences, though the method lay dormant

for quite some time [26]. Direct methods transcribe the optimal control problem

into a non-linear programming problem (NLP), which in modern days is then solved

numerically [107, 48].

2.2.1 Transcription and Collocation.

The underlying technique for a direct method is collocation, or transcription—

terms which are often used interchangeably. The state vector is approximated and

represented by a discrete number of variables (e.g., coefficients of a Fourier series).

The continuous dynamic constraints for the system are then evaluated at select col-

location points, or nodes, producing a discrete number (albeit typically a large num-

ber) of static equations—one for every state, at every node [86]. These constraints

are used to form a new, static optimization problem, seeking a vector of state and

control variables at each collocation point to minimize the overall cost while obeying

each of the new static constraints. In essence, the problem has been transformed

from an infinite-dimensional optimization problem to a finite-dimensional, non-linear

programming problem [8]. There is no guarantee that the optimality or the dynamics

hold at other than the collocation points [101], but I. M. Ross has shown, for an

increasing number of nodes, that “If the optimal solution of the discrete problem

converges, it must converge to an optimal solution of the continuous problem [41].”

After conversion to an NLP, the problem can be solved with a host of solvers designed

for this purpose such as SNOPT [39], SPRNLP [6], or KNITRO [15], most of which

use Sequential Quadratic Programming (SQP) as the primary solution method and

account for matrix sparseness with a semi-definite reduced-Hessian.

20

2.2.2 Pseudospectral Methods.

Instead of directly discretizing a state or control history, the number of optimiza-

tion parameters can be decreased by parameterizing the vector using a series:

u(t) =
N∑
i=1

ci�i(t) (1)

The constants, ci, are the parameters solved appropriate for the set of basis functions,

{�i(t)}Ni=1. If orthogonal polynomials are used as the basis functions, and the zeros of

orthogonal polynomials (or their derivatives) are used for the collocation points, the

method is dubbed pseudospectral [25, 96]. Using polynomials allows trivial differenti-

ation, which makes enforcement of the dynamic constraints more efficient than other

direct methods which rely on integration to approximate the vector field [56].

Pseudospectral methods had their origin in spectral methods, a technique for solv-

ing partial differential equations referenced as far back as Reddien in 1979 [94] and

used extensively in the realm of fluid dynamics [16]. The ideas migrated into control

theory in the field of chemical engineering with the work of Cuthrell (among oth-

ers) [20]. Within recent years, the application of pseudospectral methods to optimal

control has grown quickly, and the frequency of journal articles on the subject has

had a sharp rise. At least in simulation, pseudospectral methods have been applied

to the control of platforms spanning from cars [71] to hypersonic reentry vehicles [58].

There has been a great deal of development and refinement of PSM, resulting in

three primary varieties, the Legendre-Gauss-Lobatto Pseudospectral Method (LPM),

the Gauss Pseudospectral Method (GPM), and the Radau Pseudospectral Method

(RPM). The fundamental difference stems from the selection of collocation points.

Commonly, for problems with a finite final time (may be unknown), the affine trans-

21

formation:

t =
tf − t0

2
� +

tf + t0
2

(2)

is applied to transform the problem from time interval t ∈ [t0, tf] to the interval

� ∈ [−1, 1]. The infinite horizon problem is mapped from t ∈ [t0,∞) to the finite

horizon � ∈ [−1, 1], but states and controls at the final point are intentionally not

calculated to avoid a singularity [27, 34]. Transforming the time allows selection of

interpolation points from the interval -1 to 1. The distinction is made between state

interpolation points, which include the endpoints � = −1 and � = 1, and the colloca-

tion points, where the dynamic constraints are applied [35]. GPM does not collocate

at either endpoint, but only at the interior Legendre-Gauss (LG) points. This style

of collocation leads to a set of discrete Karush-Kuhn Tucker (KKT) optimality con-

ditions identical to the discretized form of the first-order optimality conditions of the

continuous problem at the LG points, allowing the costates to be accurately esti-

mated using KKT multipliers from the NLP [5]. RPM uses Legendre-Gauss Radau

(LGR) points, which include one endpoint or the other (the non-symmetric points

can be mirrored about zero). Though the KKT conditions differ, the method includes

collocation at an endpoint, reducing the requirement to solve for that point and po-

tentially increasing the accuracy of the solution. Notably, differentiation matrices

from both GPM and RPM are both non-square and full rank, allowing the expression

as an integration matrix, making the problem reversible. Costate estimates for both

GPM and RPM converge exponentially. LPM, which uses Legendre-Gauss-Lobatto

(LGL) points for collocation (including both endpoints), has a square, singular differ-

entiation matrix. This directly provides the state and control at both endpoints, as

well as ensuring the dynamics are met, but at the cost of a potentially non-convergent

costate [35]. The weights, differentiation matrices, and techniques for generation of

enough constraints differ for each of the methods.

22

For each of the techniques, the orthogonal nodes are not equally spaced, but

clustered near the endpoints, similar to Chebyshev points. This spacing minimizes the

Runge phenomenon, a potentially divergent oscillation that can occur when increasing

the order of an interpolating polynomial, as in Figure 6 [65].

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

x

y
Example of Runge Phenomenon

Truth: y = 1/(1+5x2)
5 Nodes
4th Order Polynomial
11 Nodes
10th Order Polynomial

Figure 6. Runge Phenomenon as the Number of Equally Spaced Nodes is Increased

In addition to accurate interpolation, the proper selection of collocation points

also aids in the evaluation of the objective function. With the states and control

only being evaluated at discrete points, the objective function can be quickly cal-

culated with quadrature, exact to polynomials of degree 2n + 1, and guaranteed to

converge for higher order polynomials to any continuous function by the Weierstrass

Approximation Theorem [65]:

J =

∫ 1

−1

f(x, u) dx ≈
n∑
i=1

wif(xi, ui) (3)

where weights, wi, are selected appropriate to the collocation scheme (e.g., Gauss

points, Gauss weights).

23

Controls or states with discontinuities are problematic, often suffering from Gibb’s

phenomenon, (a large oscillation prior to a jump in the solution) [32]. If the problem is

known to be non-smooth (a change in mass when a rocket drops a stage, for example),

it is best dealt with by segmenting at problem areas with “knots” [96], or phases [91].

These can also be used to mark a point in the problem where the dynamics change.

Since the nodes are concentrated at the start and end of each phase, the break point

will generate the greatest nodal density, and the number of nodes for each phase can

be increased until the solution is sufficiently accurate.

Tsuchiya sought to increase the density of nodes in the first portion of a solution

in a near-real-time implementation for aircraft guidance. Recursive solutions were

provided every 30 seconds. Assuming convergence of the next path, only the first 30

seconds of each provided path was flown. An introductory segment of fixed time was

declared, with a higher node density to provide smoother control for the portion of

the path that would actually be used [110].

2.2.2.1 Adaptive Grid Refinement.

Darby has contributed an hp-Adaptive method that adjusts griding on the fly,

even for systems where the shape of the solution is not known [21]. Finite element

“hp” methods were adapted, where ℎ refers to the segment width and p denotes the

order of the polynomial degree in each segment. Recalling that the dynamics of the

states and controls are only enforced at the collocation points, Darby calculates the

same collocation constraint (the derivative of the approximating polynomial must

match the derivative supplied from the dynamics), but the constraint is evaluated

between collocation points, forming a matrix of midpoint residuals. Oversimplifying,

if a single residual is high, a discontinuity is suspected and a segment break is added

24

for the next iteration. If many residuals are high, a poor polynomial fit is assumed

and p is increased.

This method was adopted for the real-time controller in this project. Accomplish-

ing collocation in this manner allows fewer nodes to be used in attaining the initial

solution, without fear of missing important characteristics in the optimal path, as

differences between nodes will be checked. Fewer nodes translates to a less complex

NLP, solved with a greater speed. While more solution iterations are required, each

iteration “bootstraps” the guess from its predecessor, greatly aiding convergence.

2.2.3 Real-Time Implementation Methods.

Recent efforts to apply optimal control in real-time are increasing. In cases where

a feedback law (LQR, LQG, etc.) cannot be formed, a partial solution can be used for

some simple problems. Kalmár-Nagy found that for a simple minimum-time TPBVP,

knowing the structure of the solution (bang-bang in this case [75]) can sometimes offer

relationships that must be held constant, producing a “near optimal” problem with

greatly reduced order that can be solved quickly—either completely open-loop, or

partially closed [61].

Benson recognized another potential technique using the Gaussian pseudospectral

method for real-time control [4]. His novel idea hinged on the recognition of the avail-

ability of an accurate costate from the method, particularly the initial costate, even

with a small number of nodes. Assuming the state, x, dynamics, f , time, t, costate, �,

Hamiltonian, ℋ, control u, and the set of admissible controls, U, the relationships for

the state and costate are found through the familiar first-order necessary conditions:

dx

dt
= f (x(t),u(t), t) (4)

d�

dt
= −dℋ

T

dx
(x(t),�(t),u(t), t) (5)

25

Further, Pontryagin’s maximum principle supplies the optimal control:

u(t) = arg min
u∈U

[ℋ (x(t), �(t),u(t), t)] (6)

Benson’s unique concept is to use the pseudospectral method to determine the

initial value for the costate. This value is combined with a measurement of the actual

state to determine the current control with Equation 6. The value for control, along

with the state measurement and the pseudospectral approximation for the initial

costate, are used to propagate the time derivative of the costate with Equation 5,

using a single step numerical technique such as a Runge-Kutta integration scheme [65].

As the costate is propagated, the control is continually updated with Equation 6. As

disturbances and modeling errors alter the current state from the optimal trajectory,

the optimal problem is re-solved using the current state as the initial condition to find

a new estimate for the current (now the new initial) costate. The costate propagation

is re-initialized with this value and the recursion continues. Of course, this solution

assumes that the cost function is not time-varying.

Gong and I. M. Ross outline a different style of recursive feedback—certainly the

most popular, and arguably the simplest. A real-time optimal trajectory planner

produces an outer-loop reference trajectory as quickly as possible, while a linear or

non-linear controller maintains the reference trajectory until the next update. The

concept is that if the outer-loop reference trajectory can be calculated quickly enough,

the inner loop can be removed [41, 95]. The comparison is made between simple

sample and hold style discrete control and the forward-looking, open-loop solutions,

repeatedly applied, referred to as “Carathéodory-� feedback” [95]. The conclusion is

reached that with fast enough open-loop solutions, the search for a closed-loop feed-

back can be abandoned [10] (this conclusion will be challenged in Chapter VI). When

the outer loop is not “fast enough,” errors will occur in the initial conditions. An

26

assumed initial condition is seeded to the trajectory planner (based on expectations

from the last optimal plan), but disturbances, unknowns, and differing computation

times will change the actual value of the state when the new optimal solution becomes

available. Yan and Strizzi [119, 106] have implemented Bryson’s neighboring optimal

control law [13, 18] using an indirect method in an effort to correct for small devi-

ations from the assumed conditions. This technique was replaced with cosine wave

smoothing for this project.

The intent of this research is to build upon these efforts in the area of real-

time optimal control. The developed methods will be applied to solving a classical

estimation problem—trajectory optimization for bearing-only target analysis.

2.3 Trajectory Optimization

Trajectory modification for the purpose of localization and bearing-only tracking

(BOT) has been implemented in the submarine community, at least at the heuristic

level, for at least 60 years [104]. The ability to estimate range with only an angle

sensor is intuitively dependent on the geometry from which the measurements are

taken, as was shown in Figure 2 on page 4. Most efforts to increase the efficacy

of the observer’s trajectory on target state estimation have attempted to optimize a

path based on control from two general categories—pure localization theory, and dual

control theory, typically a suboptimal hybrid of estimation and optimal control. Both

methods rely on the principles of pure localization, and trajectories are optimized

based on some representation of target position information, such as the Fisher Infor-

mation Matrix (FIM), the Cramér-Rao Lower Bound (CRLB), or an estimated error

covariance. One limitation of these techniques is the loss of the full directional quality

that should be guiding the trajectory when the information reference is compressed

27

into a scalar performance index. There has been a great amount of effort invested in

attempting to find out which cost functional is least affected by this limitation.

2.3.1 Localization and Bearing-only Tracking.

Lindgren [72], with Nardone and Aidala [82] laid some of BOT problem’s founda-

tional groundwork in the submarine context by developing criteria for observability.

Efforts to increase observability began with “two leg” options, looking for a “lead-lag”

trajectory [76], or fixing the heading for the initial leg and optimizing the heading for

the second leg [29].

Hammel expanded on this [47, 45], pushed the BOT processing algorithms [46],

and investigated the application to trajectory planning by maximizing an analytic

approximation of the determinant of the FIM. The FIM provides a measure of the

amount of information that is obtained from measurements, and is a function of

the geometry of the problem, rather than the estimation method. Maximizing the

determinant of the FIM effectively minimizes the volume of the uncertainty ellipsoid

around the target position estimate.

Hammel’s method for optimal control problem formulation became the standard

approach—the continuous problem was parameterized, assuming the observer to have

a constant speed and infinite heading-rate ability. A preset number of equal length,

constant heading segments was then assumed, reducing the optimal control to a single

sequence of headings to apply to the segments. Note that a constant velocity and fixed

final time (indirectly assumed through a fixed number of equal duration segments)

are common assumptions made in these techniques for tractability. This represents

a major shortcoming—in effect, when solving for the optimal path, the sensitive

parameters of path length and the number of measurements must be provided as

assumed inputs, though they greatly change the nature of the solution. Figure 7

28

demonstrates this with plots from Hammel [44] and Oshman [84], where both V T/r0

and K represent a required solution input parameter of the ratio of total path length

to initial (unknown) range—essentially a fixed final time for the constant velocity

observer. A ratio of one or greater results in collision and a singularity.

(a) Families of Solutions Varying V T/r0 [44]

Fig. 3: Optimal trajectories for varying K
2000

1800"

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
X[m]

1600

1400-

-200

Fig. 4: Observer trajectories

2000 2500 3000 3500
X[m]

4000 4500 5000

10

American Institute of Aeronautics and Astronautics

(b) Families of Solutions Varying K [84]

Figure 7. Effect of Specifying Path Length on Localization

Passerieux followed Hammel with much of the same approach, but instituted a

numeric solution for the actual optimization [87]. Oshman did likewise, comparing

the optimization of a direct gradient-based method (collocation), an orthogonal func-

tion parameterization method (still direct collocation, but performed with fewer pa-

rameters by approximating the control vector with orthogonal basis functions), and

with a differential inclusion method (removing control by replacing it with a state

constraint, such as an equation for constant velocity) [85]. Liu used a suboptimal

approach, analytically maximizing a lower bound on the determinant of the FIM,

vice the determinant itself [73].

Faced with problems that stem from compression of the information metric into

a scalar, Helferty moved away from the determinant of the FIM [50]. Minimizing

the scalar uncertainty volume (or the area, for this particular 2-D case) was found

to produce solutions that may favor highly eccentric confidence ellipsoids. This is

29

especially problematic for localization problems, where the largest ambiguity axis

often corresponds to the unknown range variable, where most of our attention is

needed. Minimizing the trace of the CRLB was suggested instead. The CRLB is a

lower bound on the error covariance of the estimation problem. It represents the best

certainty attainable from measurements along that path, not necessarily what could

be obtained by some other path, and by definition is the inverse of the FIM for an

efficient estimator. With each eigenvalue corresponding to the square of one axis

of the confidence ellipsoid, the trace (sum of the eigenvalues) yields the sum of the

squares of each axis. Therefore, minimizing it penalizes solutions with a large axis of

uncertainty resulting in less ambiguity of optimal solutions [49]. Logothetis developed

a similar “mutual information metric,” the maximization of which was equivalent to

the minimization of the CRLB determinant [74].

The trace of the FIM has at times been selected as the metric of choice and efficient

to calculate, but has also been shown to be unstable and potentially singular [88].

Le Cadre created an approximation of the FIM that was additively monotonic, and

then took the trace of the approximation [67]. He later followed the concept, allowing

for maneuver of the target using a hidden Markov model (HMM), and determined the

optimal heading sequence with classical dynamic programming [68]. More recently,

Per Skoglar used a steepest descent method for the optimization and a particle filter

for the estimation. For the Gaussian case, he showed that trajectory planning with

the determinant of the FIM was equivalent to using the differential entropy of the

posterior target density [102]. In the context of multiple robots using Model Predictive

Control (MPC), Leung chose to maximize the minimum eigenvalue of the FIM for

localization [70].

Ponda compared solutions using several of the most popular FIM metrics (deter-

minant, maximum eigenvalue of the inverse, negative trace, and trace of the inverse)

30

in the context of the same problem—determining the location of a ground target

optically with a sUAS, allowing 100 measurements in a fixed path length [88]. Un-

surprisingly, the determinant of the FIM was found to no longer contain information

about the angular dependence between the measurements (compression). Maximizing

the trace of the FIM was better, and avoided some local minimum problems along

a single path, but found to be unstable and have the potential to result in a singu-

larity. The largest eigenvalue of the inverse of the FIM (minimizing the largest axis

of the uncertainty ellipsoid), and the trace of the inverse of the FIM (minimizing the

average variance of the estimates) yielded similar results, with faster convergence and

higher stability in the optimization. The final metric was preferred. In simulation,

Ponda found that increasing the allowed number of measurements led to a growing

number of local extrema with severe sensitivities to initialization. As must often be

done in the world of optimization, impractical results were avoided by initializing the

optimization close to the global minimum, which, of course, is problematic for real

applications.

Note that a common thread in all of these cases is that a scalar approximation of

the information metric is the cost functional that is optimized. Regardless of which

particular metric is used, all of them suffer from the loss of some directional infor-

mation when a scalar is produced from a multi-dimensional information matrix. The

effort to minimize this unavoidable effect is one reason for the variety of approaches.

Another common theme is that bearing-only tracking and localization techniques se-

lect guidance purely for better estimation of the target location. The actual path

that is selected is of no consequence, excepting that the path must be restricted

from reaching the target, else the optimal information gathering technique becomes

collision (information from bearing measurements will be shown to be inversely pro-

portional to the square of range). The UAV scenarios accomplish this by mandating a

31

fixed, planar altitude above the target and optimizing over a receding horizon, and the

submarine and robot scenarios typically choose a fixed final time indirectly, short of

that required to reach the target of interest. Unfortunately, such solutions are highly

dependent on the time horizon selected, making “optimality” more of a mathematical

construct than a practical reality.

2.3.2 Dual Control Theory.

The previous references are examples of optimizing a trajectory to increase the

quality of estimation, without concern for the actual direction of the path. The

converse can be seen in optimal problems that still seek to estimate the target location,

but without reference to the geometric effect of the path. The focus may be simply

on “camera-on-target” time or homing, as solved with several methods, such as direct

collocation [38, 97], neural networks [37], or heuristics [99, 118, 23].

As a real-time example, in [38], Geiger designed a controller to solve for a string of

waypoints that would enable a sUAS to maximize time above a target with a known

position. The technique was rooted in work by Dickmanns [22], with equally spaced

nodes, Hermitian interpolation, and a receding horizon approach. The solution shape

was to fly directly to the target, then to perform a maximum rate turn back around,

forming a cloverleaf pattern after multiple passes. To achieve the fixed 4 second

update interval, only 7 nodes were used with a short 20 second “look ahead” time for

the receding horizon (about enough time for one turn). This represents an important

step in real-time optimal control, but does not account for the geometric effects of

the path on target estimation quality.

The work herein addresses the problem of accomplishing both efforts simultane-

ously. Localization is critical, but so are the path characteristics—with the path being

primary. The submarine example from the introduction concerns tracking a contact,

32

but the primary mission is often moving into position to employ ordnance. Firing a

torpedo is the mission, target position certainty is a requirement. In the same way,

the HARM missile seeks not only to localize its target, but to hit it. The sUAS must

maneuver to localize a power line, but the real mission is to land.

This type of problem is by definition non-holonomic—achieving the final state is

the key, but that state is dependent on the path taken to achieve it. The control and

estimation concepts are fundamentally coupled and inseparable [79]. The system has

two purposes that may directly conflict with each other, but both are necessary—the

quality of estimation affects the quality of control and vice versa [64]. This is ad-

dressed with so-called dual control or dual effects theory [30]. Dynamic programming

and search-based approaches are the general solution techniques, but are commonly

prohibitive even for small problems [64, 66, 13].

Frew addressed a similar problem to this work with exhaustive search. In guiding

a robot with an angle sensor, the problem was again parameterized to find a heading

sequence, but in this case, a particular final covariance was able to be achieved. This

was not done in the optimal control formulation (a contribution of this dissertation),

but by considering the outcomes of a generated acceptable set of paths. For tractabil-

ity, only five turn-and-drive segments were allowed with turns restricted to one of five

directions (45∘ apart initially, see Figure 8b for an example of three steps with 20∘

spacing). The final covariance in the target estimate was then calculated using a

measurement at each step for each of the 3,125 paths.

Four total iterations were performed, the latter three centered around the best

path of the previous run, with the space between allowable angles decreasing each

time. The number of segments used became the cost function (options being integers

1-5, representing the minimum time solution). The first path calculated that obtained

the required final covariance was declared the best path, because any additional paths

33

Observer Trajectory Generation For Target-Motion Estimation Using Monocular Vision 59

4.3. Problem Statement

 (4.6)

Because Equation (4.6) fully represents the observer trajectory, the remainder of this chapter will use the

term trajectory to refer to a vector of successive heading angles.

The equations describing the transformation from trajectory to observer states at the beginning of each

maneuver are:

(4.7)

(4.8)

(4.9)

(4.10)

where is the duration of the zero-radius turn, and is the duration of the straight-line traverse.

Depending on the trajectory-design objective, the maneuver duration is specified in one of two ways. For

the case when minimum uncertainty is desired in fixed time, the total trajectory duration and number of

maneuvers are specified. In this case the maneuver duration is just where is the

number of maneuvers. For the fixed-accuracy scenario, the maneuver duration is fixed and the number of

Figure 4.2 Trajectory parameterization

Θ θ1 θ2 … θn X0 V ω Tman
T

=

Tturn θk 1+ θk–() ω⁄=

Tleg Tman Tturn–=

∆L V Tleg⋅=

xobserver k 1+[]

xobs k 1+[]

yobs k 1+[]

x·obs k 1+[]

y·obs k 1+[]

xobs k[]

yobs k[]

x·obs k[]

y·obs k[]

∆L θk 1+()cos⋅

∆L θk 1+()sin⋅

V θk 1+()cos⋅

V θk 1+()sin⋅

+= =

Tturn Tleg

Tman Ttotal n⁄= n

(a) Motion with Five Segments

4. Core Observer-Trajectory Design Algorithm

66 Observer Trajectory Generation For Target-Motion Estimation Using Monocular Vision

The breadth-first expansion is shown in Figure 4.5. In this example the range of possible heading values is

restricted to

 (4.24)

where the superscript i indicates the set applies to the ith maneuver.

The expansion is breadth first, so the points labelled 1-5 are all generated from the initial position. Once

they are generated, point 1 is selected and points 6 and 7 are generated. This process is continued for all

directions from point 1, then from point 2, then 3, etc. The lines that originated at the initial observer

position are said to be at level or depth 1 and represent the possible positions of the observer after one

maneuver. The lines originating from the endpoints of the level 1 maneuvers are referred to as level 2 and

the convention continues for all levels. All maneuvers at a given level occur the same time away from the

original node. Because the target motion is predicted based only on the current target estimate, the predicted

target location that corresponds with the observer position at a given node is the same for every node at a

given level. In other words, the target is predicted to move to the same location regardless of whether the

Figure 4.5 Breadth first expansion from initial observer position using five possible heading values

Sheading
i 40° 20° 0° 20° 40°, , ,–,–{ }=

(b) Possible Paths with 20∘ Heading Separation

Figure 8. Optimization of a Robot Path by Exhaustive Search [33]

on that round that also met the final covariance requirement (and many likely would)

could at best only tie in terms of the number of segments taken. Obviously, dimen-

sionality fast becomes an issue, and every additional segment allowed increases the

required number of expected covariance calculations exponentially.

Other authors, attempting to make the problem tractable, and sometimes ana-

lytically solvable, have split the dimensions in which control is optimized for path

guidance and estimation improvement [57, 113]. Because the true problem is insep-

arable, this assumption fundamentally changes the nature of the solution, and the

results can only be suboptimal. For the 2-D problem, control in one dimension is

typically mandated, most often assuming a constant closure in the direction of the

target for a known final time. Motion in an orthogonal direction is then solved for as

a one-dimensional pure localization problem.

In [57], Johnson worked towards a solution that could be used in real-time, using

simplifications for an analytic solution to guide a formation partner from one position

to another, relative to the flight lead, using optical information to better discern the

given position of the flight lead. With constant speed and heading, the problem is

34

0.3

0.2

0.1

y
g 0
>

"'·'
.0.2

<>.3

X

.... ~
OO...VO<
PoSition

·2.1

-II- - • Initial
T.ltget
Position

·1.9 .,,s .u· .u · -1.s .,.. ·1.3
X(m)

the same as static localization. For control, each axis was treated independently. Al-

titude was held constant. Relative velocity in the X-direction was also constant (an

approximation of aircraft velocity difference for small heading crossing angles). The

initial distance was assumed known, and direct force was used for control. Measure-

ment value was equated with distance from a centerline. With these assumptions,

all that remained was a one-dimensional TPBVP with no constraints, a known final

time, and a linear system with two states—lateral position and lateral velocity.

An LQR technique was used to solve the problem analytically, with one cost term

to penalize distance from the Y = 0 centerline, and another term to encourage it

for observability. Figure 9 shows the result, with an aircraft being directed from an

initial position of X = 100, Y = 5, to a final position at (0, 0).JOHNSON, CALISE, WATANABE, HA, AND NEIDHOEFER

Fig. 7 Vehicle trajectory.

In this simulation, the follower aircraft changes its relative position from [x = 100 ft, y = 10 ft, z = 0 ft] to
[x = 50 ft, y = 0 ft, z = 0 ft]. In one case (Fig. 11), the relative position command is given as a step command
at a time of 20 seconds. In the other case (Fig. 12), the optimal path given by Equation (23) is utilized as the command
from 20 seconds to a fixed terminal time 60 seconds. Without the optimal guidance policy, there remains a steady

Fig. 8 Control input uY .

722

Figure 9. Analytic Dual-Control Solution Achieved by Isolating Each Dimension [57]

Bishop had a variation of this dimension-separating concept, shown in Figure 10.

A constant decrease in range was assumed for each time step, but it was not tied to

a direction. Localization was optimized to find the best location for that step (no

future consideration), allowing instant motion to any location in two-dimensions on

ever shrinking concentric circles until reaching the target [9].

35

Figure 10. Optimal Pursuer Trajectory with Constant Range Decrease for Each Step [9]

Much like Johnson [57], but without treating control and estimation efforts com-

pletely independently, Kim assumes a constant velocity toward the target, and then

suboptimally adds control and estimation efforts with a weighted feedback [64]:

u = Kxx̂ +Kyy (7)

The normal Linear Quadratic Gaussian (LQG) technique is used with an LQR

gain, Kx, operating on estimated state feedback, x̂, driving the system state to zero,

while the second term feeds back the current covariance to “nudge” the system away

from zero to increase the observability, as also explored in homing missile guidance

research [103, 53].

There are other techniques for determining the amount of “nudge” to add to the

fixed final time LQR solution, such as the one-step-ahead method [74, 114], which

finds the input of control that would result in the greatest decrease of uncertainty in

the target position in the next one step—assuming the next measurement will be the

last. This leads to a more optimal next step, but does not translate into achieving

the optimal path overall. Watanabe extended this to consider N steps ahead, but

36

0.4 0.6 0.8 1.2 1.4 1.6 1.8
- 1 '------'---'-----'------'--..__---'----'------'-----'

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

N = 9 Steps N = 10 Steps
1 ···· · · :······ · : · · · ····:

0.8 ----· · :·------ : · ----· : . .
0.6 ,: :

··· ··.· ··;

-0.8 : : :

0. 4 0.6 0.8 1.2 1.4 1.6 1.8
-1 '------'---'-----'------'-- -'------'----'------'-----'

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

gation with N E [5, 10]. At each step k the pursuer considers the bearing history up to and

a better
tion (in
:han the
raint on

.KS

~rization

md one
lng-only
SlY so as
lost and
ticularly
~amples

explicit
~1ze op
und for
interest
~ults on
essence,
efficient
~ver, the
~ biased
1sidered

REFERENCES

[1] C.F. Lin. Modern Navigation, Guidance and Control Processing- Vol.
II. Prentice Hall, Englewood Cliffs, NJ, 1991.

[2] P Zarchan. Tactical and Strategic Missile Guidance. AIAA, Inc .,
Washington, DC, 1994.

[3] J .Z . Ben-Asher and I. Yaesh. Advances in Missile Guidance Theory.
AIAA, Inc., Washington, DC, 1998.

[4] B.L. Stevens and F.L. Lewis. Aircmft Control and Simulation. John
Wiley and Sons, Inc., New York, NY, 1992.

[5] A.V. Savkin, P.N. Pathirana, and F. Faruqi. The problem of precision
missile guidance: LQR and H 00 control frameworks. IEEE Transac
tions on Aerospace and Electronic Systems, 39(3) :901-910, 2003.

[6] S.C. Nardone, A.G. Lindgren, and K.F. Gong. Fundamental properties
and performance of conventional bearings-only target motion analysis.
IEEE Transactions on Automatic Control, AC-29(9):775-787, 1984.

[7] M . Gavish and A.J. Weiss . Performance analysis of bearing-only target
location algorithms. IEEE Transactions on Aerospace and Electronic
Systems, 28(3):817- 827, 1992.

[8] E. Fogel and M . Gavish. n th -order dynamics target observability from
angle measurements. IEEE Transactions on Aerospace and Electronic
Systems, 24(3) :305- 308, 1988.

[9] C. Jauffret and D. Pillon. Observability in passive target motion
analysis . IEEE Transactions on Aerospa ce and Electronic Systems,
32(4): 12 90- 1300, October 1996.

[10] T.L. Song. Observability of target tracking with bearings-only mea
surement. IEEE Transactions on Aerospace and Electronic Systems,
32(4): 1468- 1472, October 1996.

[11] I. Kadar. Optimum geometry selection for sensor fusion. In Proceed
ings of SPIE Conference on Signal Processing, Sensors Fusion and
Target Recognition VII, pages 96- 107, Orlando, FL, 1998.

[12] A.G. Dempster. Dilution of precision in angle-of-arrival positioning
systems. Electronics Letters, 42(5), 2006.

[13] H.L. Van Trees. Detection, Estimation and Modulation Theory - Part

concluded that the one or two-steps-ahead solutions would be helpful for an on-line

system, but not necessarily close to the optimal solution. Using more than one or

two steps ahead was not practically implementable [115].

Hodgson used differential inclusion to solve for a missile path that, for a fixed dwell

time, would balance a cross range resolution term from an imaging radar with the

determinant of the CRLB [52]. The method still has the limitations of dependence

on arbitrary weights and loss of directional information through compression to a

scalar, but provides a variation on needing a fixed final time by using a range-to-

go as the independent variable. This is appropriate for systems that cannot turn

directly orthogonal to the target, and have a small variation in range-to-go rate (else

the measurement update interval becomes a function of the path length and direction,

as a fixed number of measurements must still be declared).

2.3.3 Trajectory Optimization Shortcomings.

Though an extensive body of work exists in the field of trajectory optimization

with a bearing-only sensor, there are areas which still need to be addressed. Regard-

less of the metric selected, all of the methods suffer from compression when trying

to characterize the directional certainty about a point with a scalar. Second, there

is no method of dual control that does not at some level depend on an arbitrary

weighting balance between control and estimation. Further, these methods require

pre-declaration of some variables (final time, path length, number of maneuvers,

and/or number of measurements) that the solution is sensitive to.

Perhaps most importantly, there does not exist a practical method, implementable

in real-time, for achieving a particular final covariance (Frew did this in a pure local-

ization sense without consideration for control, but exhaustive search is not feasible

for real-time work at this point). This is a major stumbling block for actual use of

37

these methods, beyond simulation. Current methods provide guidance to get “the

best estimate possible in a given time/path length/number of measurements,” or

provide “more” information based on a weighting scheme with current covariance.

This is not feasible for real-world applications which operate, even stochastically, in

reference to measurable, physical limitations.

In the submarine attack example, deviations from a direct path to the target

will increase the fidelity of a target estimate, but also take precious time and could

cost the first shot. Maneuvers should be kept at the minimum necessary for a valid

fire-control solution—physical requirements based on the torpedo capabilities and

friendly-fire clearance limitations. For the HARM example, the target estimate needs

to be of a quality to ensure the desired effects, based on real ranges of circular-error-

probable miss distance and effective blast radius. Maneuvers beyond this deplete

energy for the critical end-game maneuvering. For the sUAS studied in this work,

the physical drivers of the problem are the ability of the aircraft to accurately reach

a commanded point, and the physical dimensions of the attachment apparatus used

to connect to the wire.

38

III. Problem Description and Modeling

C onsider the autonomous control of a sUAS for surveillance and other mis-

sions. Completely autonomous UAS control for surveillance missions is still

an on-the-horizon capability, requiring a combination of several technologies, some

still relatively immature. Decision making, mission definition and accomplishment,

target identification and measurement, obstacle avoidance, and long-range communi-

cation of surveillance data are not addressed here. The scope of this dissertation deals

with a small part of the overall mission—energy harvesting from a power line. Short

range and limited station times are active constraints on the usefulness of our small

and micro-UASs. Both could be greatly extended through the ability to recharge

batteries. Conceptually, a small group of sUASs could be sent for surveillance of the

same target. With two recharging on a nearby power line and a third in the air,

continuous coverage could be provided without operator input.

The concept of energy harvesting through induction is not new, and the use of

power mats and such for cordless devices is becoming commonplace. The most effi-

cient method is to place a clamp around a source, as done with an an inductive ring

around a spark plug wire for an old timing light. Getting an inductive clamp down

to a light enough weight realistic for small vehicles, yet effective enough to charge in

a reasonable time without arcing problems is a current topic of research at Defense

Research Associates (DRA).

3.1 Segmentation of Control Modes

The process for landing on a power line will require several segments, where the

goals and methods of control change as milestones are accomplished. The minimum

39

number of control mode switches include an acquisition segment, where control is

provided to reach a position likely to pick up the power line in a sensor, an approach

segment, where control is determined by the observability needs to accurately estimate

the wire’s relative positive while guiding to an offset approach point, and a flare

segment, where control is provided to perform a maneuver that will safely attach

to the wire from known flight conditions and offset. The concept is illustrated in

Figure 11.

1. Identify Wire,
Acquire Angle

2. Optimally Maneuver
for Range Observability

4. Flare to Hang on Wire

β

rx

rz

3. Guide to Relative Approach
Point, Achieving Enough
Certainty to Land

1.

2.

3.
4.

Figure 11. Conceptual Approach and Flare Segments

The acquisition segment is within our current capability. It is assumed that the

vehicle has navigational awareness through GPS, INS, optical flow, or some other

capacity. This includes having a rough knowledge of power line locations, available

on local maps or from imagery. While certainly not accurate enough to land with, this

is sufficient to find a power line by maneuvering to a position orthogonal to the wire.

Identification of the line can be accomplished with a feature extraction algorithm,

such as a fast Hough transform, operating on sequential images. The images can

40

be collected from a device such as simple webcam, available on many of the smaller

UASs.

This work addresses the approach segment—beginning with an initial measure-

ment of angle to the wire, and ending at an approach point with the prescribed states

necessary to begin a flare-to-land maneuver, such as relative distance, relative height,

heading, speed, and other requirements for specific systems. Since the approach point

is defined relative to the power line’s true location, it must be estimated to a quality

likely to end in a successful flare prior to arrival.

The actual flare segment is currently being investigated by several institutions

for fixed-wing sUASs. In [19], a fixed-wing glider was perched on a wire using an

aggressive flare maneuver from both 2.5-m and 1.5-m approach points, using full

information about the location of the wire. The approach point in this work, xapp,

was correspondingly set to 2-m.

Since the test platform for the algorithm was a helicopter vice a fixed-wing UAS,

an aggressive flare segment was not required. The final condition in the optimal

controller was simply set to slow to a hover by the time it reached the approach

point. Once the final conditions are achieved, to include the minimum target position

certainty, the RTOC control mode is switched off, and the helicopter flies directly to a

perch point underneath the last known location of the wire, continuing to update its

position until the wire is no longer in the field-of-view of the camera. As the vehicle

approaches the perch point, it slows gently to a stop and descends to engage a hook

on top of the vehicle.

41

3.2 Modeling for the Relative Position Problem

Full modeling for control of the real quadrotor involves 3-axis position and veloc-

ities, orientation angles and rates, engine states and lag estimates, control variables,

and many other parameters in four reference frames. The necessary portions of the

quadrotor and its flight controls are described in Chapter VIII. For consideration of

only the relative estimation problem and the optimal control portions of the problem,

however, the model can be greatly simplified.

Body frame coordinates, xb = (xb, yb, zb) ∈ ℝ3, are defined on the quadrotor with

the origin at the center of gravity (cg), the positive xb-axis direction pointing out of

the camera (referred to as the “nose” of the vehicle), yb-axis positive out of the “right

wing”, and zb-axis positive up (non-standard, left-handed system for readability of

later plots), as shown in Figure 12.

xb

yb

zb

Camera

Figure 12. Body Axis Frame

Though the estimation may be performed in purely relative terms, reference to

the inertial frame must be maintained to avoid constraints, be they aerodynamic

limitations (maximum altitude), physical considerations (terrain, walls), or tactical

limits (political borders, assigned airspace). A navigation frame is defined, anchored

inertially, with the x-axis parallel to an assumed flat Earth and positive in the shortest

direction to the power line from the point at which the first measurement is received.

The y-axis is defined orthogonally, parallel to the Earth and positive in the same

direction as the yb-axis at initialization (all Euler angles zero). The z-axis is again

42

defined positive up (non-standard) for convenience. For the actual flight test, the

origin of the navigation frame was at the center of the indoor flight test facility.

As detailed in Chapter I, the power line is modeled as horizontal, with the angle

along the wire unobservable. This leads to a planar problem, with maneuvering in the

vertical to increase observability. For simplicity, all reference to the y-axis is omitted

from mention, except when necessary in the discussion of flight control. During flight

test, the vehicle is directed to y = 0 prior to the first measurement, and is regulated to

zero during the run. The inertial position coordinate vector, x ∈ ℝ2, is then defined

as:

x(t) ≡
[
x(t) z(t)

]T
(8)

Velocity is likewise defined in the planar navigation frame:

v(t) ≡

⎡⎢⎣ vx(t)

vz(t)

⎤⎥⎦ =
dx(t)

dt
(9)

An upper total velocity limit, v2
x + v2

z ≤ v2
max, was imposed (no minimum speed

required for a helicopter), but in the manner controls were actually applied to the

quadrotor, individual limitations of ∣vx∣ ≤ vxmax and ∣vz∣ ≤ vzmax became more re-

strictive.

The true target coordinates are (xt, zt), and estimates are denoted with the hat

symbol, as in x̂t. For notational convenience, a vector of relative coordinates between

the target and the vehicle is defined using the convention shown in Figure 13.

xr(t) ≡

⎡⎢⎣ xr(t)

zr(t)

⎤⎥⎦ =

⎡⎢⎣ xt − x(t)

zt − z(t)

⎤⎥⎦ (10)

43

(xt, zt)

(x, z)

z

x

β
xr

zr

Figure 13. Relative Cartesian Formulation

The measurement angle, �, is received by a camera mounted in the nose of the

quadrotor, and defined positive up from the horizon. The camera is fixed in position

and orientation relative to the cg of the vehicle. With no required lateral motion, the

bank angle, �, and heading angle, are regulated to zero. The measurement angle is

then considered to be vertical (or corrected to vertical) from the level inertial frame:

h [x(t)] ≡ �(t) = tan−1

[
zr(t)

xt(t)

]
(11)

The function symbol tan−1 refers to the full quadrant arctangent throughout this

dissertation. It should be noted that the measurement angle is a combination of the

image angle, �image, produced from a pixel count in a known FOV, with the deck

pitch angle, �, as shown in Figure 14. Because the calculation of the image angle

causes some delay, it is critical that the images be time tagged and correlated with a

short history of pitch angle measurements.

�(t) = �image(t) + �(t) (12)

44

β
θ

βimage

IMU Position
(Center of

Gravity)

Camera
Position
(nose)

LOS to Target

Inertial Pitch Angle

Image Angle

Figure 14. Correction of Deck Pitch Angle for Inertial Measurement

For estimation purposes, � is measured at discrete times, tk ∈ [t0, tf], and is

modeled as an independent random variable:

�k ≡ h(xk) + �k (13)

where {�k}nk=1 is a zero-mean, Gaussian, white noise sequence with a constant covari-

ance:

E[�k] = 0 (14)

E[�k�
T
j] = R�kj

with �kj representing the Kronecker delta function. The added noise models the

combined uncertainty in the measurement from errors in the line detection algorithm

and errors in the estimate of the current pitch angle.

For actual implementation, it is important to consider the fact that the cg of

the vehicle is not likely to be collocated with the bearing sensor. In this case, the

optimal trajectory planning is really a sensor positioning algorithm and the optimal

path solved for is really the optimal path of the camera. If significant, the effects of

the transformation must be considered on the constraints and the control, with the

45

appropriate transformation. In this case, assuming a fixed camera lever arm in the

body frame, (rcamx , rcamz), a direction cosine matrix (DCM) is used:

⎡⎢⎣ xcamb(t)

zcamb(t)

⎤⎥⎦ ≡
⎡⎢⎣ xb(t) + rcamx

zb(t) + rcamz

⎤⎥⎦ (15)

⇒ ⎡⎢⎣ xcam(t)

zcam(t)

⎤⎥⎦ =

⎡⎢⎣ x(t)

z(t)

⎤⎥⎦+

⎡⎢⎣ cos �(t) − sin �(t)

sin �(t) cos �(t)

⎤⎥⎦
⎡⎢⎣ rcamx

rcamz

⎤⎥⎦ (16)

Control is modeled after the actual quadrotor, which uses the advantages of a

helicopter to decouple vertical and horizontal components:

u(t) ≡

⎡⎢⎣ ux(t)

uz(t)

⎤⎥⎦ =
dv(t)

dt
(17)

limited by ∣ux∣ ≤
(
dvx
dt

)
max

and
(
dvz
dt

)
min
≤ uz ≤

(
dvz
dt

)
max

, with gravity causing a

difference in vertical acceleration capability. This model is limited by two factors.

A helicopter near maximum performance cannot accelerate upward and forward at

maximum rates simultaneously. In addition, the real equations of motion have more

lag caused by additional integration steps in horizontal acceleration. The true control

signal is a differential RPM on the motors. The corresponding lift difference changes

the pitch or bank angle, which then causes horizontal acceleration. For the slow

speeds and very low bank angles of the quadrotor in the indoor flight test facility,

however, this model was sufficient for outer loop trajectory planning. For an example

of backing out controls down to the servo level from optimal trajectories, see [117].

For actual propagation and use in the own-ship position Kalman Filter, the ve-

locity and acceleration were assumed constant over a time step, and the discrete-time

46

state equation was used:

x
(KF)
k+1 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xk+1

zk+1

vxk+1

vzk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣ I2 I2Δt

02 I2

⎤⎥⎦x
(KF)
k +

⎡⎢⎣ 02

I2Δt

⎤⎥⎦uk + wk (18)

with E [wk] = 0 and E
[
wkw

T
i

]
= Qk�ik.

3.3 Transformation to Polar Coordinates

The final flight test version of the software developed in this project was imple-

mented in the Cartesian frame. Much of the research, however, was accomplished

using a polar coordinate transformation. This is still recommended for some sce-

narios, as will be discussed in Chapter IV. In this dissertation, the polar coordinate

system is non-standard, with the origin at the estimated target position, as shown in

Figure 15, defining �(t) positive for the current range, and the polarity of � opposite

of the traditional use.

Estimated Target

Position

β

Ceiling Limit

Floor Limit

Figure 15. Polar Formulation

47

This formulation allows several advantages, and is recommended for similar re-

search that has fewer position constraints, such as the submarine problem, and sensor

systems capable of using angular rate, �̇, in the cost function or constraints. The ad-

vantage to the Cartesian system is fast propagation of the linear dynamics, at the

cost of a non-linear measurement function. The polar system, defined as:

y(t) =

⎡⎢⎣ �(t)

�(t)

⎤⎥⎦ (19)

has a linear measurement function:

Hy =

[
0 1

]
y(t) (20)

The linear measurement function will aid in accurate measurement updates to the

target estimate, but typically at the cost of a non-linear dynamics function. However,

if control is applied in the form of radial acceleration, �̈(t), defined as positive away

from the target, and tangential acceleration, �̈(t), defined positive clockwise:

y(KF)(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�(t)

�(t)

�̇(t)

�̇(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
uy(t) =

⎡⎢⎣ �̈(t)

�̈(t)

⎤⎥⎦ (21)

The dynamics can then be represented as fully linear and time invariant:

ẏ(KF)(t) =

⎡⎢⎣ 02 I2

02 02

⎤⎥⎦y(KF)(t) +

⎡⎢⎣ 02

I2

⎤⎥⎦uy(t) (22)

48

Approaching the model in this manner pushes all of the non-linearities into the

determination of the initial conditions for every epoch of the path planner, and into

the constraints. Through the constraints, the control of the helicopter can be appro-

priately scheduled. Noting that v = −dxr/dt , the initial conditions can be found

with:

y(KF)(t0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
x2
r(t0) + z2

r (t0) m

tan−1 zr(t0)
xr(t0)

rad

−xr(t0)vx(t0)−zr(t0)vz(t0)√
x2r(t0)+z2r (t0)

m/s

zr(t0)vx(t0)−xr(t0)vz(t0)
x2r(t0)+z2r (t0)

rad/s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

Position constraints (floor, ceiling) can be applied with the simple transformation:

(zmin − ẑt) ≤ �(t) sin �(t) ≤ (zmax − ẑt) (24)

Speed and acceleration constraints are developed with (dropping time depen-

dency):

xr = � cos � zr = � sin �

⇒ ẋr = −�̇� sin � + �̇ cos � ⇒ żr = �̇� cos � + �̇ sin � (25)

⇒ vx = �̇� sin � − �̇ cos � ⇒ vz = −�̇� cos � − �̇ sin �

Making total squared velocity:

vx
2 + vz

2 = �̇2�2 sin2 � − 2�̇�̇� sin � cos � + �̇2 cos2 � + �̇2�2 cos2 �

+ 2�̇�̇� cos � sin � + �̇2 sin2 �

= �̇2 + (�̇�)2 (26)

49

constrained with:

⇒ v2
min ≤ �̇2 + (�̇�)2 ≤ v2

max (27)

The acceleration limitations on the vehicle are similarly treated. The horizontal

acceleration capability of the quadrotor becomes limited by:

v̇x = �̇2� cos � +
(
�̇�̇+ ��̈

)
sin � + �̇�̇ sin � − �̈ cos � (28)

⇒
∣∣∣(��̈ + 2�̇�̇

)
sin � +

(
�̇2�− �̈

)
cos �

∣∣∣ ≤ (dvx
dt

)
max

(29)

The vertical limitation is then transformed to:

v̇z = �̇2� sin � −
(
�̇�̇+ �̈�

)
cos � − �̇�̇ cos � − �̈ sin � (30)

⇒
(
dvz
dt

)
min

≤
(
�̇2�− �̈

)
sin � +

(
−�̈�− 2�̇�̇

)
cos � ≤

(
dvz
dt

)
max

(31)

It is stressed that this method can be used for trajectory optimization even though

the actual range to the target is not known. The current navigation estimate is

provided to the path planner as if it were the actual target location. The constraints

are valid because they are defined relative to that point in space, whether it ends

up being the actual target location or not. In implementation, it was found that

the linear measurement function was a strength for the estimation filter, but the

significant non-linearities in the path constraints had potential to slow down the

optimization (slightly). In an attempt to get the most from both worlds, a Hybrid

EKF is developed in Chapter IV that can be used in some scenarios, as well as the

UKF that was used in the final power line landing flight tests that validated the

complete system.

50

IV. Bearing-only Estimation

R ange estimation is clearly the core of the bearing-only analysis problem in

this dissertation, and the concepts of range observability are central to the

trajectory optimization problem as well. The fundamental non-linearity of the system

has made this a classic relative estimation problem.

Historically, triangulation has been accomplished by solving a system of equations

generated from a point-slope equation taken at each measurement position, with the

target coordinates as unknowns, or by generating equations with the law of sines,

and using the collection of ranges at each measurement as the unknowns. With

two measurements, the answer for the estimate is exact (wrong, excepting perfect

measurements, but exact). With more than two measurements, the solution is over

determined. A matrix of equations is formed, and the estimate error is minimized (in

the 2-norm sense) with a pseudo-inverse following the linear least squares method.

For many on-line applications, at least for linear systems, the Kalman Filter has

become the industry standard—propagating a system forward based on known con-

trols and modeled dynamics, estimating what the next measurement will be at that

state, and applying a portion of the residual difference between the actual and ex-

pected measurements based on an optimal Kalman gain. Again, proper selection of

the gain minimizes the errors in a least squares sense.

For non-linear systems, as mentioned in Chapter III, the coordinate representa-

tion selected can impact the ability to accurately estimate relative position. For the

bearing-only estimation problem, sensor measurements can be made linear in a polar

coordinate system, but the propagation of the system is linear in the Cartesian frame.

Reference to a Cartesian navigation frame must be maintained for considerations such

as inertial own-ship position estimation and ground avoidance, but understanding of

51

the polar reference frame is also required to maintain the target within the camera

FOV angle limits.

The Cartesian-polar conversion problem is almost ubiquitous in tracking and nav-

igation applications, and many solution options have been created to minimize the

effects of the non-linearity. The Extended Kalman Filter (EKF) [11] is a common

approach, linearizing the measurement function by evaluating its Jacobian at the

current estimated state, allowing the linear Kalman filter equations to be used. The

EKF has significant limitations, however. Linearization of the measurement function

is only as good as the current estimate, and errors will not only cause the state up-

date to be biased, but will result in over-confidence in the covariance matrix. This

ill-conditioning can cause the uncertainty estimates to collapse prematurely around

bad state estimates, leading to instability of the filter. This is particularly prevalent

when the degree of non-linearity is high, or when the initial estimates for mean and

covariance are significantly off [1].

In the submarine context, the Modified Polar form introduced in [1] assists with

this, especially at long ranges with low bearing rates. The drawback is that the fil-

ter still must deal with conversion to and from Cartesian coordinates to avoid the

real-world navigation and dynamic constraints. Other options include least squares

filters [105], maximum-likelihood techniques [36], particle filters [63], Gauss meth-

ods [45], pseudo-linear trackers [51], and many other debiasing techniques [69].

For this research, two main estimation filters were used—a Hybrid Extended

Kalman Filter and an Unscented Kalman Filter. Both filters were found to be ef-

fective, with little difference in actual estimation performance. The ability to get an

unbiased mean for a small amount of additional complexity, and the required shape

of the final covariance ellipsoid were the primary drivers of the design decision to use

the unscented filter. The UKF, in the form implemented, provides the expected final

52

covariance estimates in terms of Pxx and Pzz (the respective diagonal elements of the

covariance matrix), without using an undesirable extra non-linear conversion. For the

particular implementation of the quadrotor, the shape of the hook used to attach to

the wire necessitated that the wire’s position be known to a particular level in the

z-axis direction to enter the “mouth,” and a particular level in the x-axis direction to

know when to stop, and when to descend (see Figure 16). This made the UKF more

desirable.

12.7 cm

17.8 cm

Figure 16. Quadrotor Hook Design

For cases where uncertainty in terms of range and angle is important, such as

would be for the likely sUAS design of a device with a conical “mouth” to attach to

a power line, the HEKF should be considered. For long range engagements with a

slow bearing-rate, the modified polar form is recommended.

4.1 The Hybrid EKF

The HEKF is a variant of the EKF based on [1], but not using the modified polar

form. It is a mid-point between using an EKF defined purely in either the Cartesian

or polar frames, and variants of it have been used in cases such as this where the

53

motion of the vehicle will be provided in one frame, but the measurement in another.

The effect of the non-linearity is not magically bypassed—a transformation between

the forms will still be made based on a faulty angle estimate. However, by applying

the propagations that we know in inertial space, the measurements we know in polar

space, and by tracking state error from a nominal condition vice the actual states, we

can minimize the filter errors.

As the nominal trajectory will be provided by the path planner, there is no need to

track the velocity or acceleration in the filter. The uncertainty in the position errors

are assumed to have reached a steady-state (additive covariance), and the size of the

errors are assumed to be small in relation to the errors in the angle measurements.

Only the two relative states are then required, as defined in Equations 19 and 20, on

page 48, and related by the one-to-one transformations:

xr(t) = sx [y(t)] =

⎡⎢⎣ y1(t) cos y2(t)

y1(t) sin y2(t)

⎤⎥⎦ (32)

y(t) = sy [xr(t)] =

⎡⎢⎣ √x2
1(t) + x2

2(t)

tan−1
[
x2(t)
x1(t)

]
⎤⎥⎦ (33)

Assuming that the vehicle will move along a nominal path, we can add changes

in Cartesian position over a time step, &(t, t0), for a discrete standard form of the

dynamics:

xr(t) = Λ(t, t0)xr(t0) + &(t, t0)

= Λ(t, t0)sx [y(t0)] + &(t, t0) (34)

54

For the linear, Cartesian case, Λ(t, t0) is reduced to identity. Substituting Equation 34

into Equation 33 yields the propagation equation for our states in polar form:

y(t) = sy [Λ(t, t0)sx [y(t0)] + &(t, t0)]

≡ s [y(t0); t, t0] (35)

Following the Extended Kalman Filter derivation [77], and using the x1k∣k−1 to

indicate the first element of xr at time tk using all available measurements through

time tk−1, we may express this in a discrete propagation:

yk∣k−1 = sy
[
Λk,k−1sx

[
yk−1∣k−1

]
+ &k,k−1

]
=

⎡⎢⎣
√(

sx1

[
yk−1∣k−1

]
+ &1k,k−1

)2
+
(
sx2

[
yk−1∣k−1

]
+ &2k,k−1

)2

tan−1
[
sx2[y(k−1∣k−1)]+&2(k,k−1)
sx1[y(k−1∣k−1)]+&1(k,k−1)

]
⎤⎥⎦

=

⎡⎢⎣
√
x2

1k∣k−1 + x2
2k∣k−1

tan−1
[
x2k∣k−1

x1k∣k−1

]
⎤⎥⎦ (36)

and may formulate a matrix of partial derivatives evaluated along the nominal tra-

jectory:

Sk,k−1 =
∂s
[
yk−1∣k−1; tk, tk−1

]
∂yk−1∣k−1

(37)

For ease of calculation, observe that:

xrk∣k−1 = Λk,k−1xrk−1∣k−1 + &k,k−1

=

⎡⎢⎣ y1k−1∣k−1 cos y2k−1∣k−1 + &1k,k−1

y1k−1∣k−1 sin y2k−1∣k−1 + &2k,k−1

⎤⎥⎦ (38)

55

⇒

∂xrk∣k−1

∂yk−1∣k−1

=

⎡⎢⎣ cos y2k−1∣k−1 −y1k−1∣k−1 sin y2k−1∣k−1

sin y2k−1∣k−1 y1k−1∣k−1 cos y2k−1∣k−1

⎤⎥⎦
=

⎡⎢⎣ cos y2k−1∣k−1 −x2k−1∣k−1

sin y2k−1∣k−1 x1k−1∣k−1

⎤⎥⎦ (39)

Allowing the partials of the transformation to be formed:

∂s1

[
yk−1∣k−1; tk, tk−1

]
∂y1k−1∣k−1

=
1

2

⎛⎝ 1√
x2

1k∣k−1 + x2
2k∣k−1

⎞⎠[2x1k∣k−1

(
∂x1k∣k−1

∂y1k−1∣k−1

)
+ 2x2k∣k−1

(
∂x2k∣k−1

∂y1k−1∣k−1

)]

=
x1k∣k−1 cos y2k−1∣k−1 + x2k∣k−1 sin y2k−1∣k−1√

x2
1k∣k−1 + x2

2k∣k−1

(40)

∂s1

[
yk−1∣k−1; tk, tk−1

]
∂y2k−1∣k−1

=
1

2

⎛⎝ 1√
x2

1k∣k−1 + x2
2k∣k−1

⎞⎠[2x1k∣k−1

(
∂x1k∣k−1

∂y2k−1∣k−1

)
+ 2x2k∣k−1

(
∂x2k∣k−1

∂y2k−1∣k−1

)]

=
x2k∣k−1x1k−1∣k−1 − x1k∣k−1x2k−1∣k−1√

x2
1k∣k−1 + x2

2k∣k−1

(41)

∂s2

[
yk−1∣k−1; tk, tk−1

]
∂y1k−1∣k−1

=
1

1 +
[
x2k∣k−1

x1k∣k−1

]2

⎡⎣x1k∣k−1
∂x2k∣k−1

∂y1k−1∣k−1
− x2k∣k−1

∂x1k∣k−1

∂y1k−1∣k−1

x2
1k∣k−1

⎤⎦
=
x1k∣k−1 sin y2k−1∣k−1 − x2k∣k−1 cos y2k−1∣k−1

x2
1k∣k−1 + x2

2k∣k−1

(42)

56

∂s2

[
yk−1∣k−1; tk, tk−1

]
∂y2k−1∣k−1

=
1

1 +
[
x2k∣k−1

x1k∣k−1

]2

⎡⎣x1k∣k−1
∂x2k∣k−1

∂y2k−1∣k−1
− x2k∣k−1

∂x1k∣k−1

∂y2k−1∣k−1

x2
1k∣k−1

⎤⎦
=
x1k∣k−1x1k−1∣k−1 + x2k∣k−1x2k−1∣k−1

x2
1k∣k−1 + x2

2k∣k−1

(43)

Making the complete partial derivative matrix in a form that will be used for discrete

propagation of the covariance:

Sk,k−1 =

⎡⎢⎣ x1k∣k−1 cos y2k−1∣k−1+x2k∣k−1 sin y2k−1∣k−1√
x21k∣k−1

+x22k∣k−1

x2k∣k−1x1k−1∣k−1−x1k∣k−1x2k−1∣k−1√
x21k∣k−1

+x22k∣k−1

x1k∣k−1 sin y2k−1∣k−1−x2k∣k−1 cos y2k−1∣k−1

x21k∣k−1
+x22k∣k−1

x1k∣k−1x1k−1∣k−1+x2k∣k−1x2k−1∣k−1

x21k∣k−1
+x22k∣k−1

⎤⎥⎦ (44)

4.1.1 Hybrid Filter Algorithm.

To assemble the filter, the typical assumption of a Gaussian distribution of mea-

surement noise that is uncorrelated in time is accepted, and is reasonable for this

scenario. The filter must be initialized with an initial mean, ŷ0, and covariance, Py0 ,

using the most likely pickup bearing (the mostly likely initial angle based on the ac-

quisition segment profile), and the most likely pickup range, based on analysis of the

true sensor performance. The typical EKF non-linear integration for the propagation

of the state estimate is replaced by simply applying the inertial change in state for

one time step from the semi-discrete optimal path of the trajectory planner, x∗i :

&(tk, tk−1) = x∗i (tk)− x∗i (tk−1) (45)

The state is then advanced with Equation 34, and converted back to polar coordinates

with Equation 33. The covariance is propagated in polar form as well, with:

Pk∣k−1 = Sk,k−1Pk−1∣k−1S
T
k,k−1 (46)

57

Note that no process noise was added to the state or covariance propagation equa-

tions, based on the assumption that the inertial vehicle position estimate had reached

steady-state. This means that, with a static target, the target position estimate un-

certainty does not grow between measurement updates.

Measurements are modeled as in Equation 13 on page 45, but replacing the mea-

surement function with the polar form from Equation 20:

�k = Hyyk + �k (47)

When measurements become available, the system estimate and error uncertainty

can now be updated with the common linear Kalman Filter equations:

Kk = Pyk∣k−1Hy
T
[
HyPyk∣k−1Hy

T +R
]−1

ŷk∣k = ŷk∣k−1 + Kk

[
�k −Hyŷk∣k−1

]
(48)

Pyk∣k = Pyk∣k−1 −KkHyPyk∣k−1

This form of the HEKF was used for much of the build-up research prior to the

final flight test with the actual wire, and it remains a potential option for others

following with similar scenarios. In addition, in Chapter V, the information states

and their dynamics are developed from the Fisher Information Matrix using the same

fundamental principles used here for the EKF. For the final flight test however, the

desire to represent the final error covariance in the Cartesian frame, and the desire

to avoid a potential bias from the estimated mean drove the decision to use the

Unscented Transformation.

58

4.2 Unscented Kalman Filter

The UKF was used for target estimation for the final quadrotor flight test re-

sults presented in Chaper IX [59]. As in an EKF, the target position estimate and

the measurements are characterized with probability density functions (pdfs), in this

case Gaussian, and represented by the first two moments of the state (mean and

covariance). The propagation and update steps are again considered time invariant

Markovian processes, allowing recursive calculations at each time step to perform

the non-linear transformations of the pdf. These calculations are referred to as “Un-

scented Transformations,” and when implemented with the propagation and measure-

ment steps to perform estimation, the algorithm is dubbed the Unscented Kalman

Filter, or sometimes the sigma-point Kalman Filter (SPKF). The UT is based on the

fact that it is easier to approximate a probability distribution than an arbitrary non-

linear transformation. There are several variants that can be optimized for different

applications, varying such factors as the selection of the sigma-points within the nec-

essary conditions, choosing the regression weights, and performing the transformation

to different orders of accuracy. For this research, propagation was performed again

with the linear transformation using Equations 34 and 45. The measurement update

was performed with the following algorithm, taken from [59]:

1. Sigma-points, X ∈ ℝnx×(2nx+1), are selected for the nx states in a manner that

maintains, for the set, the mean and covariance of the current distribution prior

to the measurement update, x̂−rk and P−k :

X (0)−
k = x̂−rk

X (i)−
k = X (0)−

k +
(

c
√

(nx + �) P−k

)
i

i = 1, . . . , nx

X (j)−
k = X (0)−

k −
(

c
√

(nx + �) P−k

)
j

j = nx + 1, . . . , 2nx

(49)

59

The symbol
(

c
√

(⋅)
)
i

represents the ith column of the matrix square root, ob-

tained with the Cholesky decomposition.

2. Each state vector sigma-point is transformed into the measurement space through

the observation function, Equation 11, with the appropriate element substitu-

tions for xr and zr:

Z(i)−
k = h

[
X (i)−
k

]
i = 0, . . . , 2nx (50)

3. The statistics of the projected sigma-points are calculated for the estimated

measurements. The mean is found with a weighted sum:

ẑ−k =
∑2nx

i=0
W (i)
m Z

(i)−
k (51)

where the weights are determined with:

W
(0)
m = �/(nx + �)

W
(i)
m = 1/[2 (nx + �)] i = 1, . . . , 2nx

(52)

with scaling parameter � = �2 (nx + �)−nx to meet the necessary condition for

an unbiased mean,
∑2nx

i=0 W
(i)
m = 1. The gain on the sigma-point spread, loosely

speaking, was set at � = 0.001, and the tuning parameter was set at � = 0.

As the noise on the variables is independent, the variance may be additively

applied, calculating the covariance and cross correlation with:

Pzzk =
∑2nx

i=0 W
(i)
c

(
Z(i)−
k − ẑ−k

)(
Z(i)−
k − ẑ−k

)T
+Rk

Pxzk =
∑2nx

i=0 W
(i)
c

(
X (i)−
k − x̂−k

)(
Z(i)−
k − ẑ−k

)T (53)

60

using the covariance weights:

W
(0)
c = �/(nx + �) + (1− �2 + �)

W
(i)
c = 1/[2 (nx + �)] i = 1, . . . , 2nx

(54)

For this Gaussian distribution, the tuning parameter was set optimally at � = 2.

4. A weighting gain is then calculated:

KUKFk = Pxzk(Pzzk)
−1 (55)

and applied to project the appropriate residual error onto the mean prediction

and update the covariance:

x̂+
rk

= x̂−rk + KUKFk

(
zk − ẑ−k

)
P+
k = P−k −KUKFkPzzkK

T
UKFk

(56)

During the flight test, the UKF and the trajectory planner were run consecutively.

As multiple measurements often became available while the trajectory planner was

calculating (Δtmeas = 0.33), all new measurements were processed in batch at each

iteration.

61

V. Simultaneous Solution of the Optimal Control and

Estimation Problems

S imultaneous solution of the optimal control problem and the optimal es-

timation problem requires breaking down the fundamental observability re-

quirements of an estimator into elements that can inform an optimal control solver

how to move to make the estimate better, in the midst of some control task. Exam-

ples of initial work in this direction were provided in Chapter II, under the umbrella

of localization. Localization techniques find a scalar metric to assess estimate qual-

ity, and seek the path that will optimize that metric in a given time or number of

measurements. As has been shown, most of the work in localization is in the area

of finding the most desirable performance index, since compressing the necessarily

multi-dimensional knowledge of a target’s position into a scalar results in a loss of

directional information that can be problematic.

Dual control concepts were also introduced that broaden this effort. The funda-

mental localization techniques remain unchanged, but a control desire is added to the

performance index with the information metric. Basic methods include separating

the efforts into different dimensions and treating them independently. More compre-

hensive efforts typically pit the contending desires of control and estimation against

one another—applying a cost functional element on control that regulates the states

to a particular path, and another cost related to estimation quality that pushes the

states away from that path in an effort to increase observability.

Many of the same limitations from localization exist for dual control. The direc-

tional information is still compressed to a scalar cost function, and researchers have

still relied on a fixed final time (at times indirectly). Of further concern for dual

control is the question of how to determine the set of weights that balance how much

62

effort should go to each desire, typically dealt with by using an arbitrary function

of the current estimate uncertainty. In the end, the values set for the weights will

determine the overall level of certainty that the system has at the end of the path,

which may or may not meet the physical needs of the system.

Each of these limitations of current methods needs to be addressed in turn, starting

with the scalar cost function (determinant, trace, etc.). Regardless of the metric

selected, all of them attempt to encapsulate directional information contained within

the Fisher Information Matrix.

5.1 Development of the Fisher Information Matrix from the Cramér-Rao

Lower Bound

The concept of Fisher Information is a byproduct of the development of the

Cramér-Rao Lower Bound, commonly used in estimation, the derivation of which

is taken from [111]. Fisher Information is fundamentally tied to the concept of ob-

servability in the framework of estimation theory. If a measurement is treated as a

random variable, Z, with � being a sample of that variable, and the measurement is

dependent on the state, x, treated as an unknown but deterministic parameter, then

a likelihood function, p(Z; x) would describe the probability of receiving a particular

� given a known x. Plotting p(Z; x) gives insight into the observability of x through

the measurement �. If the plot showed a low variance (a tight peak), then there is a

strong ability to estimate x with the measurement �. It could be said that � relates a

good deal of information about x, or that x is highly observable. Note that the ability

to estimate x is dependent on the collection of measurements. This is characterized

by the FIM, which is developed from the definition of an unbiased observer, which

63

states that the error of an estimate conditioned on a particular state will be zero:

E [x̂(Z)− x∣x] =

∫ ∞
−∞

[x̂(�)− x] p(�; x) d� = 0 (57)

This must be true for all values of x, therefore:

∂

∂x

∫ ∞
−∞

[x̂(�)− x]p(�; x) d� = 0 (58)

Assuming that ∂p(�; x)/∂x exists and is absolutely integrable, the partial is taken

inside the integral and the chain rule is applied:

−
∫ ∞
−∞

p(�; x) d� +

∫ ∞
−∞

(x̂(�)− x)
∂p(�; x)

∂x
d� = 0 (59)

Note that the measurement is assumed to be Gaussian, with the associated expo-

nential distribution. Therefore:

∂p(�; x)

∂x
= p(�; x)

∂ ln p(�; x)

∂x
(60)

The furthest right partial derivative is referred to as the score. Also note that by

definition of a pdf: ∫ ∞
−∞

p(�; x) d� = 1 (61)

Equation 59 then reduces to:

∫ ∞
−∞

(
∂ ln p(�; x)

∂x
p(�; x) [x̂(�)− x]

)
d� = 1 (62)

⇒

∫ ∞
−∞

(
∂ ln p(�; x)

∂x
[p(�; x)]1/2

)(
[p(�; x)]1/2 [x̂(�)− x]

)
d� = 1 (63)

64

The CRLB is then found by squaring both sides and splitting the integral with

the Cauchy-Schwarz inequality:

∫ ∞
−∞

(x̂(�)− x)2p(�; x) d�⋅
∫ ∞
−∞

(
∂ ln p(�; x)

∂x

)2

p(�; x) d� ≥ 1 (64)

The left argument is recognized as the expected mean-squared error of the esti-

mator, and the right argument is defined as the Fisher Information, the variance of

the score (the mean of the score can be shown to be zero). For an unbiased estimator,

then, the CRLB tells us that the certainty with which we know our estimate is limited

by the Fisher Information of the likelihood function:

Var [x̂] ≥ ℐ−1 (x) (65)

where:

ℐ (x) = E

[(
∂ ln p(Z; x)

∂x

)2
∣∣∣∣∣x
]

(66)

A more useful formulation is found with Equation 60 and the assumption made

for Equation 59, differentiating the likelihood function with respect to x:

0 =
∂

∂x

∫ ∞
−∞

p(�; x) d� =

∫ ∞
−∞

∂p(�; x)

∂x
d� =

∫ ∞
−∞

∂ ln p(�; x)

∂x
p(�; x) d� (67)

Assuming the second partial exists and is integrable, the equation is differentiated

again: ∫ ∞
−∞

∂2 ln p(�; x)

∂x2
p(�; x) d� +

∫ ∞
−∞

(
∂ ln p(�; x)

∂x

)2

p(�; x) d� = 0 (68)

which leads us to the familiar form of the FIM:

ℐ (x) = E

[(
∂ ln p(Z; x)

∂x

)2
∣∣∣∣∣x
]

= −E
[
∂2 ln p(Z; x)

∂x2

∣∣∣∣x] (69)

65

Taylor applied this form of the FIM to a dynamical system with a non-linear,

time-varying state vector under deterministic inputs with time-varying measurements

corrupted by additive, Gaussian white noise sequences [108]. Because the measure-

ments are assumed to be independent, the likelihood function is a product of the

individual Gaussian exponential distributions. Under the logarithm, this becomes a

sum, allowing a recursive form of the FIM to be found by taking the expectation of

the second partials:

퓘k+1∣k =
[
ΦT
k+1,k

]−1퓘kΦ
−1
k+1,k + HT

k+1R
−1
k+1Hk+1 (70)

where Φk+1,k is the state transition matrix from xtk to xtk+1
, and Hk+1 is the Jacobian

of the observation function from Equation 11:

Hk+1 ≡
∂h [xk+1]

∂xk+1

=

[
∂
∂x

tan−1 zrk+1

xrk+1

∂
∂z

tan−1 zrk+1

xrk+1

]
=

[
1

1+

(
zrk+1
xrk+1

)2

(
zrk+1

x2rk+1

)
1

1+

(
zrk+1
xrk+1

)2

(
−1

xrk+1

)]
(71)

=

[
zrk+1

�2k+1

−xrk+1

�2k+1

]

Equation 70 shows that the amount of information that each measurement provides is

encapsulated in the term HT
k+1R

−1
k+1Hk+1. Assuming a constant uncertainty for each

measurement, ��, the directional information is contained within HT
k+1Hk+1. The

same conclusion is reached if the problem is addressed with a least squares approach

on a Taylor series expansion expanded around a nominal state, as is done in the GPS

dilution of precision (DOP) analysis (HTH is known as the DOP matrix [81]), flipping

the problem to use measurement uncertainty in angle vice the GPS uncertainty in

66

range. Unsurprisingly, this also can be seen in the observability Grammian as well [78]:

M ≡
∫ t1

t0

ΦT (�, t0) HT (�) H (�) Φ (�, t0) d� (72)

In the polar formulation, the transition matrix rotates the information matrix to

the new orientation of � and � as the observer moves in relation to the target. In

the Cartesian formulation, however, the estimate of the target state is anchored to

the navigation frame, which does not change as the relative coordinates vary. The

state transition matrix is identity. If the certainty in the observer’s position has

reached a steady-state, then the only time the information certainty in the target

estimate changes is when there is a measurement update, removing process noise

from consideration. Using Equation 70 and the appropriate trigonometric identities,

the Fisher Information Matrix becomes:

퓘k = 퓘0 +
1

�2
�

⎡⎢⎢⎣
k∑
i=1

sin2�i
�2i

−
k∑
i=1

sin�i cos�i
�2i

−
k∑
i=1

sin�i cos�i
�2i

k∑
i=1

cos2�i
�2i

⎤⎥⎥⎦ (73)

5.1.1 Directional Compression and One-Step Ahead Analysis.

Many of the trajectory planning techniques currently in use compress metrics

similar to Equation 73 into a scalar to determine the optimal path. This can be

instructive. Applying a one-step ahead approach and using the determinant of the

FIM as the metric of choice, the question becomes how to maximize the information

in the next step. Adopting the abbreviations Sk = sin �k and Ck = cos �k, the

67

determinant becomes:

det
(
HT
kHk + HT

k+1Hk+1

)
=

∣∣∣∣∣∣∣
1
�2k
S2
k + 1

�2k+1
S2
k+1 − 1

�2k
SkCk − 1

�2k+1
Sk+1Ck+1

− 1
�2k
SkCk − 1

�2k+1
Sk+1Ck+1

1
�2k
C2
k + 1

�2k+1
C2
k+1

∣∣∣∣∣∣∣
(74)

=
1

�4
k

S2
kC

2
k +

1

�2
k�

2
k+1

S2
kC

2
k+1 +

1

�2
k�

2
k+1

S2
k+1C

2
k +

1

�4
k

S2
k+1C

2
k+1

− 1

�4
k

S2
kC

2
k −

2

�2
k�

2
k+1

SkSk+1CkCk+1 −
1

�4
k

S2
k+1C

2
k+1

=
1

�2
k�

2
k+1

(
S2
kC

2
k+1 − 2SkSk+1CkCk+1 + S2

k+1C
2
k

)
=

1

�2
k�

2
k+1

(SkCk+1 − Sk+1Ck)
2

=
1

�2
k�

2
k+1

(
1

2
sin (�k + �k+1) +

1

2
sin (�k − �k+1)

−1

2
sin (�k+1 + �k)−

1

2
sin (�k+1 − �k)

)2

=
1

�2
k�

2
k+1

(sin (�k − �k+1))2 (75)

This equation gives insight to the geometry of the problem, and supports natural

intuition. Subsequent measurements from the same angle yield no new information—

neither do measurements from an opposing angle across the target (difference of �).

To accomplish the goal of minimizing the area of uncertainty around the target loca-

tion estimate (from any fixed �k and �k), the observer should move in such a manner

to decrease the range and increase the orthogonality of the next measurement. Note,

however, that the information about the shape of the uncertainty ellipse has been

lost in the compression. Initial efforts for this research treated this one-step ahead

approach as an optimal problem, analytically solving for a control policy analogous

to [114]. The result was a spiral toward the target very similar to that of [88].

68

Though implementable in real-time, this localization approach was not optimal

over the entire trajectory, and failed to address a significant number of the limitations

of previous research. Most glaringly, the future value for the covariance at the end

of the path is unknown, and the shape of that uncertainty ellipsoid is lost in the

compression. Real systems require a trajectory that will allow them to achieve a

particular certainty magnitude and shape determined by physical realities. A method

was sought to reach a particular final certainty, based on the true system requirements.

5.2 A New Approach

Localization and dual control methods compress an information metric to a scalar

performance index and seek a control that will maximize the amount of information.

This may or may not meet the certainty requirements of a system based on physical

realities—the required fire control solution to launch a torpedo for the submarine,

the size and shape of the hook used for a sUAS to land on a wire, etc. If a path

received from a trajectory planner balances a weighted effort on localization and

control, the ending certainty level is unknown. If requirements are not met, the

mission results in failure. If requirements are over-met, the solution may have met

optimality conditions, but the cost function did not match the true needs. In that

case, the trajectory planner produced the right solution to the wrong problem.

The intent of this dissertation is to fundamentally change the way the dual control

problem is approached. For systems where a level of information is a necessary,

but secondary tool required to perform a primary mission, effort and energy should

not be wasted on information-gathering maneuvers that are unneeded. The path

planning algorithm should not seek to maximize certainty, nor to nebulously balance

the amount of effort based on the certainty you have now, especially if the geometry of

69

the problem is such that the certainty level will greatly change soon. The amount of

certainty expected at the final condition, the point of mission accomplishment, should

be what drives maneuvers—not the current state and estimate. The final expected

uncertainty is a particular amount of information in each direction, dependent on the

system and the mission.

5.2.1 Suboptimal Final Covariance Shooting Method.

To begin the process of evaluating a path based on the final estimate error uncer-

tainty, a shooting method was developed. This method used ideas similar to some

of the dual control methods that selected weights to balance control and estimation

efforts. Instead of basing the weights on current certainty levels, the shooting method

uses the future certainty expected at the critical moment. As a circular argument,

an iteration was introduced to optimize on the correct set of weights, analogous to

indirect optimal shooting approaches. The weights are adjusted until the optimal

path contains the desired characteristics of the prescribed final uncertainty levels in

each direction, assuming that measurements will continue to be received along the

route. Using the orthogonality lessons from Equation 75 and the polar formulation,

the cost function was proposed:

Jsubopt = wttf +

∫ tf

t0

−wxsin2� − wzcos2� + uTyWuyuy dt (76)

The final time requirement ensured that unnecessary maneuvers were not accom-

plished, and the sine and cosine terms ensured that information from both orthogonal

directions was gained. A weakness of this method (and many of the dual methods)

is the failure to account for the fact that measurements at a close range provide a

higher level of information. Initial weights were selected based on simulation of the

path that will be solved with the initial guess, since that is known a priori. As

70

measurements are received and the estimate of the target location begins to move, an

inner iteration loop is accomplished. First, the optimal path is solved for based on the

initial weights. The measurement function is then linearized about each anticipated

measurement along that path, and the EKF update equations are used to propagate

the certainty for all expected measurements, as done in Equation 48 on page 58.

The result provides the entire expected covariance matrix at the final time, allowing

decisions to be made directionally, vice only being able to work with a scalar approx-

imation. The weighting is then adjusted based on the future expected uncertainty,

and the loop is continued until tolerances are met.

A heuristic function is required to adjust the weights. The weight on the controls

is held fixed, and the weighting on the directional information is determined by a

ratio, resulting in two “knobs” to adjust the path—one on direction ratio, wx, and

one on the final time, wt. If the final expected covariance in the x-direction, Pxx,

does not meet the requirements, its weight is increased in relation to that on Pzz

(wz = 1 − wx). If the certainty in both directions exceeds the required standard,

the path can be made shorter, and the relative weight on the final time is increased.

Families of solutions can be produced by tuning the two “knobs,” wt and wx, as shown

in Figure 17.

This method overcomes some of the major limitations of previous dual control

approaches. Besides being able to provide the requirement of a final uncertainty, the

system no longer has final time as a fixed entity. This is critical, as the path may

need to be shortened or lengthened for more measurements in response to physical

certainty requirements. Two paths are shown in Figure 18. In both cases, the initial

geometry of the problem makes getting information in the z-axis direction easy, while

the x-axis direction is initially unobservable and requires maneuver to achieve the

necessary observability. The first profile represents a solution where a low amount of

71

(a) Varying Final Time Weight, wt (b) Varying Direction Ratio Weight (wz = 1−
wx)

Figure 17. Iterative Method of Shooting for Final Covariance

(a) Profile 1, wt = 2, wx = 0.55,
wz = 0.45

(b) Profile 2, wt = 0.5, wx = 0.55,
wz = 0.45

Figure 18. Flightpaths with Different Levels of Required Final Covariance

72

J - \\,=0.5

Ceiling ",• 0.55 2---------------------- - w,"'O.G

w
1
=0.8

-2 II

2

- 0'- ..
E) -N - I

-2

:1o -5 0
x(m)

3 - \\' =0.4
~

Ceiling w =0.47
2,..-----------------~ ~

- \\' =0.5
~

w =0.55
~

.§. o------- - \\' =0.6
~

\\' =0.7
~

N

- I

-2

-3
-10 -8

2

-E -N -I

~7, _A";
-6 -4

x(m)

-5
x(m)

-2 0 2

0

additional information is required over the current levels of certainty, and the second

path is representative of a path with much greater need for information gain. Note

the speed profile differences in the details of Figure 19 and Figure 20. In the first

Figure 19. Profile 1, High Total Speed for Entire Flight

case, a maximum speed profile is optimum, while in the second, the optimum profile

is to move at maximum speed to an angle nearly orthogonal to the x-axis, and then

to dwell at a very low speed—collecting additional measurements to increase the

certainty in the x-direction.

This ability to change speed and path length far exceeds the current methods of

dual control, which rely on fixed numbers of measurements (fixed final time) and fixed

velocities in the solution. The dual control solutions are optimal in a mathematical

sense, but unless you happen to pick the optimal number of measurements for your

needs and the optimal speed, the solution isn’t really what you are looking for. This

deficiency can clearly been seen in Figure 7 on page 29.

73

N - _:~ :J "' --E -,..,
;;.

10 0 5 10

5 10 5 10
t (sec) t (sec)

Figure 20. Profile 2, High Speed to Good Observation Point, Followed by a Dwell to
Collect Extra Measurements

5.2.1.1 Shooting Method Limitations.

There are several drawbacks to this shooting method, with two that particularly

stand out. The first is the requirement for a heuristic program to search for the

weighting combination that will result in the right final characteristics. There are

many potential local minimums in this choice, as there are potentially any num-

ber of weighting combinations that may be sufficient given two “knobs” to adjust.

Mathematically, a global minimum could be attained by assuming a weight ratio to

prescribe the balance between time and direction efforts, thereby reducing the scope

of the problem to only one tuning parameter, but making that assumption would

further limit the optimality of the solution.

The obvious second drawback is the inefficiency involved with having two opti-

mization loops. Not only does the system have to iterate to find the optimal solution

for each set of weights, but it must iterate to find the optimal weights to supply the

74

required certainty levels—for every planning epoch. Each time the system receives

a new measurement, the estimated target location moves, invalidating the previous

solution and the process must begin again. In theory, these updates will increase in

speed as the target estimate becomes more certain with many measurements, and

using the previous solution as a “bootstrap” guess will speed up computation time,

but the process is too inefficient for a real-time program. A smooth, efficient, single-

shot solution was desired—one that incorporates the shooting method’s gains of a

determined final covariance and a flexible number of measurements, but that solves

the optimal control and the optimal estimation problems in a single epoch.

5.2.2 Single-Shot Simultaneous Control and Estimation.

In order to overcome the limitations of all of the localization and dual control

methods addressed in this dissertation, the basic approach to the formulation of the

optimal control problem must be fundamentally altered. Instead of optimizing on a

particular information metric, or balancing control and estimation desires (based on

that information metric), a general cost function should be allowed that encapsulates

the control desires for mission accomplishment for any given system. In the absence

of a need for additional information, this cost function should result in a solution

that follows the most desired path, be it minimum time, minimum energy, or any

other function. The final error covariance requirements must be removed from the

performance index and be addressed as they really are—a constraint. If the path

requires more maneuvering to achieve a better final target estimate, the path planner

should determine how much and in what directions, deviating from the intent of the

general cost function as little as possible. If the mission can be accomplished in the

optimal manner without additional information, the solution should be found as if

observability was not considered.

75

Though straightforward in theory, this concept is problematic. The final error

covariance cannot simply be applied as a final state combination constraint, since the

problem is non-holonomic. There is no way to calculate the final certainty based only

on the final point—the entire path must be considered. One possible solution would

be to solve the entire path first, and then propagate the Kalman filter equations

forward to see if the path met observability requirements (this is the essence of the

shooting method in Section 5.2.1). This method, however, does not provide the

optimal control solver with any path gradient information for how to change the

path in order to improve the characteristics (hence the weight iteration scheme of the

shooting method).

To get the information of how to change the path for observability requirements

into the context of the optimal control solver, the uncertainty information must be

contained within the states, or be contained within additional appended states. Only

in this manner will the constraint Jacobian contain the gradient information necessary

to correctly move the path. To do this requires a method that will quantify how the

level of information changes with respect to time, in relation to a particular system

state vector.

Attaining an appropriate dynamical equation is problematic for a continuous for-

mulation, as the information changes are characterized by steps at discrete times when

measurements are received. A fixed time step could potentially be assumed and the

optimal control problem attempted with equally spaced nodes in a parameterized

system, but sacrificing the pseudospectral node spacing of modern direct methods

means giving up speed and accuracy desired for an on-line system.

Maybeck presents a continuous equation for propagation of uncertainty matrices

within the context of the linear Kalman filter [78]:

Ṗ(t) = F(t)P(t) + P(t)FT (t) + G(t)Q(t)G(t)−P(t)HT (t)R−1
c H(t)P(t) (77)

76

In this equation, F contains the state propagation information. For the polar for-

mulation, this rotates the covariance matrix to align with the changing states of � and

�. For the Cartesian formulation, which is tied to the inertial frame, F = 0. In the

third term, G encapsulates the input-output transfer functions, which regulate the

influence of the assumed dynamics noise, described by Q. This adds the increasing

covariance trait between measurements. For this problem, since the target is static

and the own-ship position estimate is assumed to have achieved steady-state, the error

covariance does not change between measurements, so G = 0 as well. It would seem

then, that the dynamics of P could be estimated by Ṗ(t) = −P(t)HT (t)R−1
c H(t)P(t).

In that case, the elements of the covariance matrix could be appended to the state

vector, and limited to the desired final required covariance size and shape with appro-

priate boundary conditions. To achieve Equation 77, however, a simplifying assump-

tion of continuously available measurements was made. For the sUAS scenario using

line detection algorithms on sequential images for measurements, the expected update

rate was between 2 and 3 Hz. Allowing a continuous measurement assumption, and

allowing the accompanying linearization of the system, the resulting covariance esti-

mate is not responsive enough, particularly to the first measurement, and the error

is slow to correct, as shown in Figure 21.

To incorporate the measurement sample time into an approximation for the covari-

ance dynamics—again assuming that the only change happens at the measurement

update—a single update equation can be used:

P(t−i+1) = P(t+i)

= P(t−i)−P(t−i)HT (ti)
[
H(ti)P(t−i)HT (ti) + R(ti)

]−1
H(ti)P(t−i) (78)

77

Figure 21. Inadequacy of Continuous Measurement Assumption for Covariance Prop-
agation

⇒

P(t−i+1)−P(t−i)

Δtmeas
=
−P(t−i)HT (ti)

[
H(ti)P(t−i)HT (ti) + R(ti)

]−1
H(ti)P(t−i)

Δtmeas

≈ Ṗ(t) (79)

Clearly, this first-order approximation is only accurate for small values of Δtmeas,

and is questionable at best for this application. Even if accurate, however, attempting

to iterate within the context of an optimal control solver when determination of the

state dynamics at every step of every iteration includes multiple matrix multiplica-

tions and an inverse can result in poor performance and numeric instability.

5.2.3 Information States and Associated Dynamics.

The principles of the FIM can be used to address this problem. The FIM contains

all of the required directional information necessary to direct the optimal path plan-

ner, so a method for inserting that information into the context of the optimal control

78

M~~ 1~:~
0o 5 10 15

1-~~th~
25 30 20

- 100.---~--~----~--~----~--~

-~~ sol j
% ~5====1=0~=1~5~--20----2-5 ---30

problem was developed as follows. Equation 73 defining the FIM for this application

is repeated here for convenience:

퓘k = 퓘0 +
1

�2
�

⎡⎢⎢⎣
k∑
i=1

sin2�i
�2i

−
k∑
i=1

sin�i cos�i
�2i

−
k∑
i=1

sin�i cos�i
�2i

k∑
i=1

cos2�i
�2i

⎤⎥⎥⎦ (80)

Allowing the assumptions that measurements will continue to be received every

Δtmeas seconds, and that the standard deviation of each measurement, ��, is constant

for all measurements, an integral may be used to approximate the discrete steps of

the measurement updates, similar to the Euler-Maclaurin formula:

퓘k ≈ 퓘 (t)∣t=tk ≡ 퓘0 +

⎡⎢⎣ ∫ tk
t0

sin2�(t)

Δtmeas�2
��

2(t)
dt −

∫ tk
t0

sin�(t) cos�(t)

Δtmeas�2
��

2(t)
dt

−
∫ tk
t0

sin�(t) cos�(t)

Δtmeas�2
��

2(t)
dt

∫ tk
t0

cos2�(t)

Δtmeas�2
��

2(t)
dt

⎤⎥⎦ (81)

Recalling that 퓘k = P−1
k for an efficient estimator, continuous information states,

�i(t), are defined based on the elements of this FIM approximation such that:

�1(t) ≡
[
P−1(t0)

]
11

+

∫ t

t0

sin2�(t)

Δtmeas�2
��

2(t)
dt

�2(t) ≡
[
P−1(t0)

]
12

+

∫ t

t0

cos2�(t)

Δtmeas�2
��

2(t)
dt (82)

�3(t) ≡
[
P−1(t0)

]
22
−
∫ t

t0

sin �(t) cos �(t)

Δtmeas�2
��

2(t)
dt

where [P−1(t0)]ij refers to the ijth component of the matrix at time t0. Clearly:

퓘(t) = 퓘0 +

⎡⎢⎣ ∫ tt0 �̇1 (t) dt
∫ t
t0
�̇3 (t) dt∫ t

t0
�̇3 (t) dt

∫ t
t0
�̇2 (t) dt

⎤⎥⎦ (83)

79

The dynamics of the information states can then be found from the derivative of

the FIM approximation:

d퓘(t)

dt
=

⎡⎢⎣ �̇1 (t) �̇3 (t)

�̇3 (t) �̇2 (t)

⎤⎥⎦ (84)

With the dynamics available, and the initial conditions found from the inverse of

the initial covariance matrix, the information states may be appended onto the state

vector in the optimal control problem. The approximate FIM may then be formu-

lated at any point in time, the inverse of which should yield a close approximation

to the covariance at that time. Looking forward using results of the actual flight

tests, Figure 22 shows a qualitative example of the accuracy of the approximation

by post processing flight test data from Run #1, the first run with an actual wire.

The approximation data are covariance elements calculated with the inverse of the

P x
x

(m
2)

P x
z

(m
2)

P z
z

(m
2)

Figure 22. Ability to Accurately Approximate Covariance with Information States,
Flight Test Run #1

approximate FIM, which was assembled from the information states. The truth data

80

are generated by applying the Extended Kalman Filter measurement equations in the

Cartesian formulation at the measurement update times:

Kk = Pk∣k−1H
T
k

[
HkPk∣k−1H

T
k +R

]−1

Pk∣k = Pk∣k−1 −KkHkPk∣k−1 (85)

By constructing the FIM from the information states and taking its inverse, this

method provides a way to bring the information contained in the error covariance

matrix into the context of the optimal problem in a manner that provides a gradient

for how to change the path to affect certainty directionally. In this manner, with

some considerations that are addressed in Section 5.3, the error uncertainty at the

final time—the true mission requirement for the bearing-only systems addressed in

this dissertation—can now by explicitly prescribed through a multi-state boundary

condition.

5.3 Optimal Control Problem Formulation

The optimal control problem for each epoch of the real-time trajectory planner

can now be formulated using an augmented state vector:

x̃ =

[
x z vx vz �1 �2 �3

]T
(86)

Control is as defined in Equation 17 on page 46 with the limitations described

there. In Bolza form, the optimal control problem is to determine the state-control

function pair, {x̃ (t) ,u (t)}, and final time, tf (in this case t0 is known for each epoch),

81

which minimize the cost functional:

J = Γ (x̃ (t0) , t0, x̃ (tf) , tf) +

∫ tf

t0

퓛 (x̃ (t) ,u (t) , t) dt (87)

subject to the dynamic constraints:

dx̃ /dt = f (x̃ (t) ,u (t) , t) (88)

the path constraints:

C (x̃ (t) ,u (t) , t0, tf) ≥ 0 (89)

and the boundary conditions:

 (x̃ (t0) , t0, x̃ (tf) , tf) ≥ 0 (90)

with equality constraints imposed via a second constraint on the additive inverse.

The advantage to this new method of incorporating final covariance as an event

constraint (a multi-state boundary condition) in the optimal control problem is that

a general performance index can be used to best fit the situation. Note that the final

time should remain free. Previous methods have defined a fixed-final-time horizon,

or have implicitly done so by fixing the number of measurements. A free final time

allows alteration of the number of measurements received, which can greatly impact

the solution. The vehicle must have the ability to slow down in an area (or lengthen

the portion of the path that is in a certain direction for fixed velocity problems) if

more measurements are required from that aspect angle.

For the sUAS landing-on-a-wire scenario, the final time was selected to be mini-

mized with:

Γ = tf (91)

82

The states are free to move without penalty within the limitations of C, but

weighting could easily be added in other applications for best possible tracking or

avoidance of areas while still gaining the required certainty for mission accomplish-

ment. A small penalty was added on control:

퓛(t) = uT (t)Wuu(t) (92)

with the weights in Wu set to 0.1 on each diagonal element. The addition of a small

weight on control is an effective method of avoiding numerical instabilities associated

with optimal problems posed on a singular arc.

5.3.1 Avoidance of the Singular Arc.

A brief analytical look at the problem sheds light on the singular arc issue, a

recurring issue for many numerical problems. Constraints will be detailed in the next

section, but for now, none of the constraints in this particular formulation include a

combination of states and controls, and they are not functions of the initial or final

time, allowing them to be split into constraints on the state vector and constraints

on the controls, respectively:

C (x̃ (t) ,u (t) , t0, tf) =
{
Cx̃ (x̃(t)) ,Cu (u(t))

}
(93)

Defining Lagrange multipliers, �i(t), and the unit Heaviside step function:

ℍ (−Ci) =

⎧⎨⎩ 0, for Ci (x̃ (t)) ≥ 0

1, for Ci (x̃ (t)) < 0
(94)

83

The Hamiltonian, ℋ, can then be defined using the variational approach for prob-

lems with state variable inequality constraints in [66] by defining a new state variable:

ẋ8(t) ≡
[
C x̃

1 (x̃ (t))
]2ℍ(−C x̃

1) +
[
C x̃

2 (x̃ (t))
]2ℍ(−C x̃

2) + ⋅ ⋅ ⋅+
[
C x̃
ncx̃

(x̃ (t))
]2ℍ(−C x̃

ncx̃
)

(95)

for the ncx̃ constraints in Cx̃. The derivative of x8(t) is always positive, and the

value for the state is kept at zero by enforcing boundary conditions of x8(t0) = 0 and

x8(tf) = 0, thereby enforcing the state inequality constraints for all time.

The Hamiltonian for the now n+ 1 states can then be expressed as:

ℋ(x̃(t),u(t),�(t), t) = 퓛 (x̃ (t) ,u(t), t) + �1(t)f1 (x̃(t),u(t), t)

+ ⋅ ⋅ ⋅+ �n(t)fn (x̃(t),u(t), t)

+ �n+1(t)
[
C x̃

1 (x̃ (t))
]2ℍ(−C x̃

1) + ⋅ ⋅ ⋅+
[
C x̃
ncx̃

(x̃ (t))
]2ℍ(−C x̃

ncx̃
)

≡ 퓛 (x̃ (t) ,u (t) , t) + �T (t)f (x̃ (t) ,u (t) , t) (96)

In a case where control was unconstrained, the sufficient optimality condition for

control would yield:

∂ℋ(x̃∗(t),u∗(t),�∗(t), t)

∂u
= 0 (97)

As the controls are constrained for this problem by Cu, which defines the admissi-

ble controls u ∈ U, Pontryagin’s maximum principle (or minimum in this case) must

be applied:

u∗ = arg min
u∗∈U

ℋ (98)

Without the addition of the quadratic term that was added in 퓛, none of the

control terms in the Hamiltonian are higher than first-order, meaning that:

∂2ℋ
∂u2

= 0 (99)

84

Because ∂2ℋ/∂u2 is singular, u is not uniquely defined by the optimality condition—

this is the definition of a singular arc [7]. There are several methods of dealing with

singular arcs, but most of them involve substantial insight into the shape of the op-

timal solution, taking time derivatives of ∂ℋ/∂u until the control does show up, or

reformulating the problem into one without a singular arc. Many numeric methods

rely on the Hessian for direction and step size information. Adding a very light control

cost, as in Equation 92, can eliminate much of the volatility that can be associated

with numeric optimal solutions on a singular arc. If there is no noticeable change to

the optimal trajectory, or if the changes are acceptable for the system in question,

this technique provides a simple method for smoothing the control solution provided

by numeric solvers.

5.3.2 Constraints.

The Dynamic constraints, f , of Equation 88 were defined by Equations 9, 17,

and 84. Path constraints were applied to scale the problem within the physical

limitations of the available indoor flight test facility in order to make use of the

Vicon motion capture system, described in Chapter VIII. In practice, the optimization

software used required inequality constraints on all states and controls. Variables not

intended to be constrained had constraint values set well out of a realistic range, but

not at infinity to keep gradients meaningful. The potentially active constraints of C

are shown in a consolidated notation:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−9 m

0.8 m

−0.5 m /s

−0.5 m /s2

−30∘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

z

vx, vz

ux, uz

�̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xapp offset + x̂t

5.5 m

0.5 m /s

0.5 m /s2

40∘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(100)

85

The forward horizontal component, x, was limited to stay within the boundaries of

the indoor flight test facility and the expected approach point defined relative to the

wire position estimate, xapp offset + x̂t. The approach point itself is only an estimate,

changing each epoch, but it does provide some safety buffer until the desired target

certainty is reached. Vertical limits were set so that the landing gear would clear the

floor, and the “ceiling” limit ensured that the vehicle would stay low enough to remain

visible by a sufficient number of Vicon cameras. For the true sUAS scenario, the upper

“ceiling” limit could be removed in the absence of airspace limitations, simplifying

the problem for the optimal solver. The vertical “ground” limit could be replaced

with a terrain model or a min-safe altitude for terrain avoidance, as appropriate.

The vehicle speed was also limited, increasing the total engagement time to make

it representative of an actual approach. This allowed for a realistic test of the ability

of the RTOC system to control in real-time despite the inherent computational delays.

The path constraint on �̂ was intended to keep the vehicle in a position for the fixed

camera to maintain the wire within the FOV. The hat notation is kept to denote that

the value is calculated using the current target estimate, as the true FOV limits are not

known. No measurements are received when outside the true FOV. For the quadrotor,

this is always the case as the vehicle transitions to land-mode and flies underneath

the wire, but could potentially happen during the flight due to disturbances or a bad

target estimate. If possible for a full system, it is recommended that the camera and

hooking method be designed to keep the wire within the sensor FOV until connected,

to allow the ability to correct for swinging wires, wind gusts, and other endgame

disturbances.

86

5.3.3 Boundary Conditions and Formulation of Final Covariance

Constraints.

The solution of the optimal control problem is iterative. Initial conditions for

each epoch are not the current conditions, but the expected conditions at the time

the next solution is expected to become available. Based on experience with current

hardware, a complete loop time, Δtcalc = 0.9 seconds, is assumed inclusively for the

optimization problem, the estimation problem, and all transport delays. The very

first solution is seeded with zeros. After one solution exists, position and velocity

initial conditions are taken from the time history of the previous epoch’s solution,

x̃k(t), propagated forward by Δtcalc:

[
x0k+1

v0k+1

]T
=

[
xk(t+ Δtcalc) vk(t+ Δtcalc)

]T
(101)

Care must be exercised when initializing the information states, as they are only

estimates of the true FIM components, based on the assumption that measurements

will be consistently received with a fixed time interval. The realities of processing

delays, poor image backgrounds, and hardware issues in general may lead to slow or

skipped measurements. This information must be incorporated, or the accuracy of

the information state estimates will drift over time. As a result, the initial condi-

tions for the information states are reset each epoch based on the actual covariance

from the estimation filter, Pk, propagated forward by Δtcalc. To do so, an expected

measurement time vector is created based on the actual reception time of the last

measurement, tlast meas:

tmeas = [tlast meas + Δtmeas, tlast meas + 2Δtmeas, . . . , tlast meas + nΔtmeas] (102)

87

where n represents the maximum number of measurements that can be incorporated

such that:

tlast meas + nΔtmeas ≤ t0k+1
(103)

The expected relative states at each of these times for epoch k are then found,

xr(tmeasi), i = 1 . . . n. At each point, the Jacobian is produced with Equation 71,

and the EKF update is recursively performed with Equation 85. The result is

P0k+1
= 퓘−1

0k+1
, and the elements of the inverse are used as the initial conditions

for each of the information states.

For the terminal conditions in Equation 90, the first four constraints of take the

system to a hover at the approach point:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xk+1(tf)

zk+1(tf)

vxk+1
(tf)

vzk+1
(tf)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xapp offset + x̂k

zapp offset + ẑk

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(104)

For the information states, the physical considerations of hook size, in addition to

the steady-state uncertainty of the vehicle’s own-ship position estimate determine the

final certainty needs. For this particular hook design, uncertainty was best described

by setting Pxxmax and Pzzmax at the final time, but any shape covariance ellipsoid

could be specified based on system requirements.

To apply the terminal covariance conditions in terms of the information states,

the elements were found with inverse relationships:

Pxx(tf) = �2(tf) /
[
�1(tf)�2(tf)− �2

3(tf)
]
≤ Pxxmax (105)

Pzz(tf) = �1(tf) /
[
�1(tf)�2(tf)− �2

3(tf)
]
≤ Pzzmax (106)

88

Care must be taken in the application of these boundary conditions, as the de-

nominator can be near singular. This makes taking the gradients of the constraint

problematic for the numerical solution and can lead to instability. To avoid this, the

constraint can be re-written by noting that the denominator is positive. Proof : For

tf , Δtmeas , �� ∈ ℝ1 (0,∞), incorporating the assumption that the vehicle has not

hit the target, xr, zr ∈ ℝ1 (−∞,∞) : ∣xr∣ + ∣zr∣ ∕= 0, and assuming the system is

initialized with some estimate of initial information with no initial cross-correlation,

�1, �2 ∈ ℝ1 [0,∞) : �1(0) = �10 , �2(0) = �20 , and �3 ∈ ℝ1 (−∞,∞) : �3(0) = 0, then

for the finite time span Ω = [0, tf], the information states are defined everywhere on

Ω:

�1(t) = �10 +

∫
Ω

sin2�(t)

�2(t)
dt <∞

�2(t) = �20 +

∫
Ω

cos2�(t)

�2(t)
dt <∞ (107)

⇒ �1, �2 ∈ LΩ
2

therefore,the Cauchy-Schwarz inequality may be used to show:

�1(t)�2(t) ≥
∫

Ω

(
sin �(t)

�(t)

)2

dt ⋅
∫

Ω

(
cos �(t)

�(t)

)2

dt ≥
(∫

Ω

sin �(t) cos �(t)

�2(t)
dt

)2

(108)

⇒ �1(t)�2(t)− �2
3(t) ≥ 0 ∀t ∈ Ω

A singular denominator would mean an infinite uncertainty, a condition that can-

not be returned to after the finite initialization, implying a strict inequality:

�1(t)�2(t)− �2
3(t) > 0 ∀t ∈ Ω □ (109)

89

With a positive denominator, the constraints may be rewritten in to avoid any

numeric instability as:

Pxxmax

[
�1(tf)�2(tf)− �2

3(tf)
]
− �2(tf) ≥ 0

Pzzmax

[
�1(tf)�2(tf)− �2

3(tf)
]
− �1(tf) ≥ 0 (110)

90

VI. RTOC Structure—Requirement for Integrated Error

Feedback

“In theory, there is no difference between theory and practice. . . In prac-
tice, there is.”

T his chapter develops the feedback structure that should be used in real-time

optimal controllers, particularly focusing on the area of adding error integra-

tion into the recursive formulation—a technique that has been declared unnecessary

in much of the current research in this relatively new field. The shortcomings of this

approach are shown through two case studies. The first case study is made simple

enough to allow an analytical expression of the error caused by choosing to use only a

fast open-loop recursive structure, the common approach in recent studies. Two more

appropriate RTOC structures are suggested, and the second case study implements

one of them in a scenario likely to benefit from RTOC—aircraft attack planning in

the context of pop-up surface threats and stochastic disturbances.

6.1 Fast Recursive Open-Loop Control vs. Closed-Loop Feedback

The concept of RTOC is simple. Optimal solutions are desired for control, but

the solutions are only optimal for deterministic problems. If any of the assumed

parameters in the problem are inaccurate (target position, wind, etc.), the solution

provided is most likely not optimal, and may no longer be valid for mission accom-

plishment. If a new solution could be provided fast enough, however, the optimal

trajectory could be updated recursively with the most current parameter estimates.

This method typically includes “bootstrapping” the previous optimal solution as the

91

guess for the next epoch, significantly decreasing computation time. The idea of a

recursive open-loop solution is compelling—once perturbed from the initial optimal

path, why waste control effort with a feedback loop working back toward the original

reference trajectory? Why not find the most optimal control now, and apply that?

Figure 23 illustrates the situation.

{Disturbance
Error

Original
Optimal Path

Solve for New
Optimal Path

Correct to Old Path

Target

Figure 23. Decision to Follow Initial Optimal Trajectory, or to Re-solve the Optimal
Path from the Current Condition

Once the state is perturbed from the expected optimal path, correcting back to

that trajectory is likely not optimal from the disturbed position, and a new path

originating from the current state should be introduced. Re-solving the optimal

control problem as often as possible, and maintaining that reference path between

optimal path updates with a faster, inner control loop results in a two degree-of-

freedom design, such as the one shown in Figure 24, which can be found in similar

forms in [80] and [106].

Optimal
Path

Planner

Feedback
Law

Plant

Optimal
Control, uref(t)

Optimal
Path, xref(t)

++

-+

x(t)

Figure 24. Two Degree-of-Freedom Control Scheme

92

Recently, several authors have taken the speed advantages of efficient optimization

techniques and increased processing power to move the control concept one step

further—eliminating the inner loop altogether and controlling in a purely recursive

open-loop manner. Conceptually, if you have control at any point that you have

defined as optimal, why would you add anything to it? It is tempting to draw the

conclusion that if the recursive open-loop optimal control can just be solved fast

enough, there is no need for feedback, or that recursive open-loop control can be

equated to feedback control. This proposition is a current trend in the literature

for RTOC structure design. Consider the comparison of open-loop recursion with

closed-loop control in some of those pushing the state of the art in the field of RTOC:

“The feedback law is not analytically explicit; rather, closed-loop con-
trol is obtained by a rapid re-computation of the open-loop time-optimal
control at each update instant.” [55]

In simulated satellite guidance, again suggesting that rapid open-loop control

would provide optimal disturbance rejection of closed-loop feedback:

“A conceptually simple approach to controlling such non-linear sys-
tems is by solving the problems online. If such problems can be solved
online, there is no need for an off-line design of closed-form feedback
laws as, by definition, the control system would have acquired this intelli-
gence....Rather than tracking a pre-computed solution, the control scheme
proposed in this paper re-solves the optimal control problem and updates
the control command as soon as a new solution is obtained. This results
in a sampled-data feedback law which provides optimality in the presence
of various types of disturbances.” [100]

For simulated re-entry vehicle control:

93

“The key for successful implementation of these feedback principles
relies on a sufficiently fast generation of open-loop controls. Thus, if open-
loop controls can be generated as demanded by [a given speed requirement
for his problem], closed-loop is achieved quite simply.” [10]

In a foundational work on RTOC:

“Suppose optimal open-loop controls could be computed in real time.
This implies optimal feedback control.” [95]

and elsewhere:

“It has been known since the birth of optimal control that if open-
loop controls can be generated in real-time, they are basically equivalent
to feedback controls.” [106]

The concept that fast open-loop solutions equate to closed-loop feedback controls,

with the elimination of the inner loop of Figure 24, has become pervasive. While there

certainly is a level of feedback that is implicitly achieved with a recursive open-loop

structure, it falls far short of “optimal feedback control” in an environment with any

true stochastic inputs, as will be shown below.

6.2 Lack of Error Integration in Instantaneous Optimal Solutions

The purely recursive open-loop structure has shown success in simulations for

the above problems, but lessons from classical control theory suggest significant lim-

itations of this approach. The single degree-of-freedom design—removing the inner

feedback loop—recursively provides an instantaneous optimal solution (future time

history) for the control and state (the faster, the better, in theory). While valuable, if

94

the designer of a RTOC system makes the assumption that rapid open-loop solutions

yield the same performance as traditional feedback control, the resulting design will

fail to leverage the information that can be gleaned from comparing the historical

efforts to outcomes.

The whole question of RTOC implies that there are disturbances or unmodeled

effects to be rejected, else the optimal solution would only need to be found once,

rather than in real-time. Recursively solving the problem gives freedom to respond

to stochastic or unanticipated effects. Especially for cases where these disturbances

end up not falling into the classic categories of Gaussian, white, and zero-mean,

integration of the error between the expected and actual state and control history

can supply either additional compensation, or a more accurate model of the true

system dynamics through estimation of the disturbance. If the likely errors for the

system are indeed non-zero mean, or at least time correlated (and thus likely non-

zero mean over some time interval), these effects should be accounted for in selection

of the control. This requires one of many methods of feedback control that are not

achieved with a purely recursive open-loop design. Two non-linear optimal control

problems are posed to demonstrate this principle. The first is an overly-simplified

course guidance problem to allow analytic proof of the error. The second case study

will address corrective implementation in a realistic scenario.

6.3 Case Study A: Simplified Aircraft Course Planning

Consider an aircraft simply modeled as a point mass system with rectilinear po-

sition components:

xac(t) =

⎡⎢⎣ xac(t)

yac(t)

⎤⎥⎦ (111)

95

The aircraft is flying at a constant altitude, with a constant velocity, Vac. The pilot

has been cleared direct to a waypoint, or fix, (xacf , yacf), and is using the autopilot

to provide course guidance. The system dynamics are simply:

ẋac(t) =

⎡⎢⎣ Vac cos (t)

Vac sin (t)

⎤⎥⎦ (112)

where aircraft heading, (t), is the control variable. Turn dynamics are ignored for

simplicity.

The optimal control problem is a two-point boundary value problem, with a min-

imum time performance index presented in Mayer formulation:

Jac = tf (113)

Assigning �(t) ∈ ℝ2 as a vector of Lagrange multipliers, the Hamiltonian is defined

as:

ℋ(xac(t), (t),�(t), t) = �1(t)Vac cos (t) + �2(t)Vac sin (t) (114)

The first-order necessary conditions provide the costate equations:

− dℋ
dxac

= �̇∗1(t) = 0

− dℋ
dyac

= �̇∗2(t) = 0 (115)

The optimality condition for the unconstrained control provides:

dℋ
d

= 0 = −�∗1(t)Vac sin ∗(t) + �∗2(t)Vac cos ∗(t) (116)

⇒ �∗2(t)

�∗1(t)
= tan ∗(t) (117)

96

The optimal control is therefore constant, implying for this case that the state

dynamics are constant, which allows a solution for the optimal control through simple

integration of both states from the initial state conditions xac(0) = [xac0 yac0]
T :

x∗acf = xac0 +

∫ tf

0

ẋ∗ac(t) dt

= xac0 + tf

⎡⎢⎣ Vac cos ∗

Vac sin ∗

⎤⎥⎦ (118)

The unknown final time is removed by solving both equations for tf and equating

them, leaving the optimal control:

 ∗(t) = tan−1

(
yacf − yac0
xacf − xac0

)
(119)

Note that for recursive open-loop control, the initial values in Equation 119 are

simply the current position for each iteration, and the optimal control solved for by

any method will simply be a function of the relative position ratio. Absent distur-

bances, the optimal path, and the actual path, will unsurprisingly be direct to the

target as shown in Figure 25.

6.3.1 Addition of Stochastic Disturbances.

As they are unknown beforehand, the addition of the typical zero-mean, white,

Gaussian, stochastic elements in the forms of model deficiencies or disturbances does

not change the predicted solution for the optimal control. The effects of disturbances

can be countered, somewhat, by re-solving for a new optimal path at various time

steps, as was illustrated in Figure 23. However, the production of a new, instan-

taneous solution does not provide anticipation of future disturbance effects, or any

correction for past errors or modeling discrepancies. For unmodeled effects which are

97

0 0.2 0.4 0.6 0.8 1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x (unit length)

y
(u

ni
t l

en
gt

h)

Target
Propagated Location
Heading

Figure 25. Recursive Optimal Control Solution with No Disturbances, Δt=0.1 Units

more time correlated—or those that can be characterized by an unknown, non-zero

mean—effective control requires some level of feedback, such as integration of the

error between the expected and actual state path for each step, or estimation of the

unknown parameter(s) causing the disturbance.

To illustrate this, a constant bias, w, is added to the system in one axis. This bias

represents some of the effects of a wind component parallel to that unit direction.

Smaller stochastic effects of the wind are not modeled for this case study in order

to more clearly show the predominant impact and to provide the opportunity for

an analytical solution. The effects of a time-correlated noise source can be seen

by simply replacing the experiment with a correlated function, w(t). Even a time-

correlated function that is zero-mean overall can be cut into segments of time where

the mean is biased in one direction or the other, so the general effects of the noise

contribution will be the same as demonstrated here, on smaller time scales.

The dynamics of Equation 112 become:

ẋac(t) =

⎡⎢⎣ Vac cos (t)

Vac sin (t) + w

⎤⎥⎦ (120)

98

I!

and the Hamiltonian is updated to be:

ℋ(xac(t), (t),�(t), t) = �1(t)Vac cos (t) + �2(t) (Vac sin (t) + w) (121)

The costate equations do not change, and the Lagrange multipliers are still found

to be constant. The optimality condition shows that the optimal control is constant

as well, allowing integration of the states and removal of the unknown final time,

leaving the relationship for the true optimal control, ∗t :

yacf − yac0
xacf − xac0

=
Vac sin ∗t + w

Vac cos ∗t
(122)

The true optimal path is shown in Figure 26, with an arbitrary constant wind

bias of -4 (unit length)/(unit time).

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x (unit length)

y
(u

ni
t l

en
gt

h)

Target
Propagated Location
Heading Predominant

Wind

Figure 26. True Optimal Solution, with Non-Zero-Mean Disturbance, Δt=0.1 Units

If, however, the optimal steering is calculated without knowledge of the bias for

each step of the digital controller, there obviously is error between the calculated op-

timal steering, ∗, and the true optimal steering, ∗t . With the appropriate trigono-

metric identities, the instantaneous steering error from any point may be found by

99

re-solving the optimal problem from the new initial location and defining:

 ∗e ≡ ∗ − ∗t = sin−1

[
w

/(
Vac

√
1 +

yacf − yac0
xacf − xac0

)]
(123)

This steering error results in a “homing” trajectory instead of a direct flight path, as

shown in Figure 27a. The key point to emphasize is that this steering error will always

exist (excepting a displacement in the direction of a pure head or tail wind). Note that

Equation 123 is not dependent on sample time, or the speed of the recursive solution

update, but only on the geometry of the problem at the time of the update and the

intensity of the wind. A recursive open-loop solution will always produce a flawed

steering solution, without the use of some sort of feedback to allow accounting for the

wind bias. Attempts to increase the recursion rate may decrease the total path error,

but never overcome the bias (analytically proven for this problem in Equation 123).

Figure 27b shows a recursion rate of 0.01 time units.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

y
(u

ni
t l

en
gt

h)

(a) Δt=0.1 Units

Target
Propagated Location
Heading

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

x (unit length)

y
(u

ni
t l

en
gt

h)

(b) Δt=0.01 Units

Predominant
Wind

Predominant
Wind

Figure 27. Recursive Optimal Solution with Non-Zero-Mean Disturbance (Homing)

100

These results highlight the main lesson of this chapter—the pitfall of assuming

that a high recursion rate on an open-loop optimal solution is equivalent to optimal

feedback control. In the face of non-zero mean disturbance, the resultant path in

Figure 27 is clearly short of what would be considered “optimal.” A simple feedback

scheme demonstrates that the control solved for through rapid recursive open-loop

planning requires additional input. Figures 28 and 29 show the effects of adding

proportional-integral (PI) control in the form:

 fb(t) = kpep(t) + ki

∫ t

t0

ep(�) d� (124)

where ep(t) represents the orthogonal component between the current position and

the intended direct path. The gains were arbitrarily selected as kp = −20 (unit

length)/radian and ki = −60 (unit length)/radian. The command, c, then becomes:

 c(t) = ∗(t) + fb(t) (125)

Figure 28. Optimal Recursion with the Addition of PI Feedback, Δt=0.01 Units

101

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

t (unit time)

ψ
 (

de
g)

True Optimal Control
Recursive Optimal Solution
Recursive with Feedback

Figure 29. Control Requirements with and without Feedback

The addition of feedback to the recursive optimal solution causes the resultant

path and control to more clearly follow the true optimal solution, regardless of the

recursive update rate. In terms of total time-to-target (the objective), the analytical

solution for this particular example took 1.092 time units to complete the route, very

near to the 1.094 units for the recursive open-loop system with feedback, as compared

to the 1.19 units with recursive open-loop updates only.

Beyond just the timing differences and the associated increase in fuel require-

ments, the arced path of the route found without an inner control loop has real-world

navigation implications. On a regular basis under both instrument and visual flight

rules, aircraft are assigned to “proceed direct” to a certain fix, or are filed to proceed

along a route corridor by means of navigation aids (e.g. TACAN, VOR, etc.) which

provide a bearing angle to a fix. In either case, separation from other aircraft, clear-

ance of terrain, and line-of-sight for reception of the navigation aid signals is only

protected for a narrow corridor width. The clearance to “proceed direct” implies cor-

recting against the winds to fly a direct ground path, not merely homing to the target

as you would with a recursive open-loop controller, which would result in the large

102

-
IIIII II

•••
......... ···'··· ---- - -

. .. -·- ~
. '
~-,,

,'' ,,
... _,,...._ -,,

. ,,, ,, ,,
---- ~~~,,,·~-

i

lateral excursions illustrated in Figure 27. Could the RTOC approach be changed to

minimize error from a direct path? Certainly, but again, this implies implementing

some sort of explicit error feedback. The intent of this demonstration was to provide

a counter-example to the concept that speeding up the open-loop recursion rate was

equivalent to achieving optimal feedback control.

Therefore, in the design of control schemes to implement RTOC with a fast open-

loop structure, consideration of the expected character of anticipated disturbances

becomes critical. For systems that can anticipate time-correlated (at least relative to

the system dynamics), or non-zero-mean disturbances, some sort of integral control

is required to achieve near-optimum performance.

6.3.2 Error Integration through the Addition of Noise Estimates

into the System Dynamics.

For this simple case study, adding feedback was straightforward, and an inner PI

error loop around the planned and actual state paths was included. For more complex,

highly non-linear systems, this technique may not be feasible. This is especially the

case for systems with large deviations from the planned path as a result of a high ratio

of disturbances to control authority, or systems with severe non-linearities that would

require, for example, an inordinate amount of gain scheduling. A better method is

to recognize that if you applied the optimal control and did not follow the expected

optimal path, the dynamics of the model are not correct. Allowance for estimated

error parameters found through path error integration can be added into the dynamics

for the next epoch, in an effort to answer the “right” question.

For this application, this would involve first using the path error to form an

estimate for the wind bias, ŵ(t), and then updating the dynamics equation for each

recursive solution to include the current estimate for the wind. For more complicated

103

scenarios, the effects of the disturbances on the dynamics could be estimated through

both proportional and integrated error elements. For this simple case study, however,

the optimal control estimate, ̂∗, can be solved analytically:

 ̂∗(tk) = tan−1

(
yac f − yac(tk)
xac f − xac(tk)

)
− sin−1

[
ŵ(tk)

/(
Vac

√
1 +

yac f − yac(tk)
xac f − xac(tk)

)]
(126)

Again, this is an instantaneous solution at any time, tk, used by substituting

the current state into the original problem as new initial conditions. The effects are

shown in Figure 30. Note that no attempt is made to return to any previous reference

0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x (unit length)

y
(u

ni
t l

en
gt

h)

Target
Propagated Location
Heading

Figure 30. Recursive Optimal Control using Feedback to Update Dynamics

solution, but instead the system follows the optimal path that was calculated from

each current position. Since the only disturbance that was added was constant, linear,

and no measurement noise was considered, the estimate is correct after only one time

step. Beyond that, the calculated solution matches the true optimal solution from

that point, since all of the information about the disturbance is completely known.

Even in a realistic environment where the disturbances are changing, this final

control structure represents the best of all worlds, combining the positive aspects of

classical control with the emerging benefits of real-time optimal control. The control

104

to be applied is completely generated by the numerical optimization scheme, but

implicitly contains the integrated error feedback, which is used to update the system

dynamics and change the optimal control problem for each iteration, overcoming

the inability of the purely recursive open-loop structure to handle time-correlated or

non-zero mean unmodeled effects.

6.4 Case Study B: Real-Time Aircraft Attack Planning

A more robust and realistic example quickly shows the potential impacts of a

failure to consider error integration in recursive real-time optimal control. One of the

most obvious applications for optimal path planning is for threat avoidance. Stealth

considerations of radar cross section, threat radar detection capability, and effec-

tive surface-to-air missile (SAM) engagement ranges must be considered in attack

planning. For maximum effectiveness, the plan should be accomplished in real time.

Pop-up threats, by definition unanticipated, cannot be avoided using mission planning

that was accomplished prior to take-off. In addition, without the ability to change

the plan enroute, a pilot cannot immediately exploit weaknesses such as a defense

system that has been removed or reduced in operational capability in some manner

by another strike package. All of this is possible with RTOC.

Consider a strike planned on a soft target, defended with a perimeter of SAM

threats along the planned route. For specific applications, the performance index

would be designed to consider the specific capabilities of each threat and the advan-

tages of the attacking aircraft, but as a generic illustration, a 15 nm (nautical mile) or

30 nm ring is assigned to each SAM location, and the run is constrained to a constant

altitude with a constant 350 knots true air speed (TAS). The SAM ring represents

105

a weapon employment zone, outside of which the aircraft can safely operate in the

absence of air-to-air threats.

Admittedly avoiding minimum exposure and stealth issues (which could be incor-

porated with the appropriate modeling), the basis for the performance index for this

attack scenario remains a Mayer cost function of final time, as it was for the case

study in Equation 113. This equates to a minimum fuel consumption index for a

constant altitude and airspeed run (if throttle increases during turns are considered

negligible). Other options could include a penalty for proximity to threats, if flight

was allowed within the threat rings. In practice, non-stealth aircraft pilots determine

a safe distance from SAMs and stick to it, unless threat ring penetration is required.

The no-wind dynamics remain unchanged from Equation 112, and the control

is still a commanded heading, which would be the input to a standard heading-hold

autopilot with a feedback-based bank angle control law to drive the physical actuators.

RTOC provides the flexibility of avoiding additional pop-up threats simply by adding

new path constraints, ensuring flight outside of the SAM threat rings:

[x(t)− xi]2 + [y(t)− yi]2 ≥ �2
i i = 1 . . . nSAM (127)

where nSAM is the number of currently known SAMs.

Control is accomplished by recursively solving the optimal control problem, with

no explicit feedback (as before, some implicit feedback is available through the re-

initializing of the optimal control problem at the current measured position). As

previously stated, this mirrors the structure of RTOC becoming popular in the liter-

ature, eliminating the inner feedback loop around the optimal path.

The optimal control solution is found using a direct technique of the class of pseu-

dospectral methods known as the Gaussian Pseudospectral Method, which differs

slightly from the Radau method that was used for the quadrotor flights. The method

106

and software used for this simulation are described in [90, 92]. With this efficient

method, computation time for each epoch took an average of 0.18 seconds using 30

nodes (conservative for such an application) on a standard desktop 2.49 GHz processor

with Microsoft Windows R⃝ XP running a Matlab R⃝ environment. Increases in speed

could be expected if the software were tailored for this specific application and the al-

gorithm translated into a faster programming language such as C++TM. Considering

the scenario, however, this is more than adequate for real-time control. Furthermore,

in order to clearly refute the point about open-loop recursion equating closed-loop

feedback if done “fast enough,” the simulation was artificially accomplished with zero

computation time. Though this is unrealistic, it puts the recursive solution in the

best possible light, showing the limitations of what could be accomplished even as

the optimal control problem approaches being solved in real-time. Any limitations

remaining, therefore, are deficiencies in the technique, and not complications from

computational delay between the request and the receipt of the optimal solution.

6.4.1 Pop-up SAM Avoidance Results, No Wind Condition.

Figure 31a shows the initial optimal path, planned by the subject aircraft as it

starts an attack run, avoiding the known SAM rings and proceeding to the target. In

a deterministic system, with the absence of disturbances such as wind or any further

threat information, this route would be flown perfectly, and according to Bellman’s

principle of optimality, even as the optimal problem is recalculated along the route

of flight, the resultant course will never change [66].

Introduction of new information is incorporated and adjusted by adding the ap-

propriate constraints. Figure 31b shows the position of the aircraft along the optimal

path as the aircraft’s systems become aware of a new emitter and the path must be

107

altered. Solutions are continually being reproduced in the path planner, only this

time the constraints will have changed.

0 50 100 150 200 250
−100

−50

0

50

100

150

x (nm)

y
(n

m
)

Initial Position
Target
Known SAM Ring
Planned Flight Path

(a) Initial Flight Path

0 50 100 150 200 250
−100

−50

0

50

100

150

x (nm)

y
(n

m
)

Propagated Flight Path
Expected Flight Path

Known SAM
Rings

Pop−up SAM Ring

(b) Time=25 min, as a Pop-Up Threat Emerges

Figure 31. Recursive Optimal Path Planning Around Surface-to-Air Threats—No
Wind

Though direct methods are relatively insensitive to initial guesses, optimization

via any gradient method is only guaranteed to find local minimums. For this sce-

nario, any path around each side of every “wall” of contiguous threats will produce

a local minimum, resulting in a non-convex space of convex channels. Several guess

generating algorithms can be designed to determine the possible channels for in-

vestigation for the global minimum, such as the branch-and-bound technique found

in [24]. Intelligent planning can be also be used to decrease the number of options.

Potential methods include dynamic programming concepts, starting from the end of

the solution and working backwards—once a global solution has been found to com-

pletion from any point, there is no need to search that portion of the path again.

Another, simpler, solution for the minimum time problem is just to sort the channels

by distance, checking the shortest channel for feasibility of the optimal solution (with

respect to turn rate and other constraints). When the final optimal time of the first

108

···:1 -

........

···o··- ~_ : . .

.- ~.~: -: -- .,..,; ·.-. -~
~~" .,.; ~ .

~1~ . -.Y

feasible channel is less than the minimum possible time in the remaining channels,

the search is complete. This brute force method is neither elegant nor efficient, but

a better solution is beyond the intent of this case study.

Figure 32a shows the result of two new emitters being sensed by the aircraft.

The guess-generation algorithm provides two routes to investigate, and after running

the optimization routine on the shorter, the longer route is discarded since the min-

imum possible time is greater than the time of the feasible solution, resulting in the

completed flight path of Figure 32b.

0 50 100 150 200 250
−100

−50

0

50

100

150

x (nm)

y
(n

m
)

Propagated Flight Path
Expected Flight Path
New Pop−up SAM

Decision Points

(a) Time=30 min, with New Pop-Up Threats. Ma-
jor Adjustment Required

0 50 100 150 200 250
−100

−50

0

50

100

150

Completed Flight Path−−No Wind

SAM Rings

Decision Points

(b) Completed Flight Path

Figure 32. Completion of Recursive Optimal Path Planning Around Pop-up Surface-
to-Air Threats—No Wind

These results support the efficacy of using an optimal control solution in defining

flight paths which include changing parameters or constraints, and are on the level

with the kind of RTOC simulations solved by the authors quoted in Section 6.1. The

difficulty arises when stochastic inputs in the form of disturbances and measurement

noises are considered. As demonstrated in the simple case of Case Study A, the

controller will still achieve the primary goal, however, the path taken may be far

less than the best that could be accomplished in the same circumstances, and may

109

still result in mission failure. For the design of an RTOC system, additional control

may likely be desired to overcome the lack of path-error integration in the recursive-

only structure, especially in the presence of possible non-zero mean or time-correlated

disturbances or measurement errors.

6.4.2 Effect of Non-Zero Mean or Time Correlated Stochastic Dis-

turbances.

A first-order Gauss-Markov process is used to simulate potential wind gust inten-

sity:

ẇgust(t) = − 1

T
wgust(t) + �gust(t) (128)

where T is a time constant for the system, and �gust is zero-mean, white, Gaussian

noise with E[�gust(t)] = 0 and E[�gust(t)�gust(t+ �)] = Qgust�(�), using the standard

definition for the delta function. Similar Gauss-Markov processes were used to de-

termine a lower frequency variation in wind intensity, wpred wind, and for determining

variance in the wind direction. Measuring wind velocity in knots, and direction in

degrees, the time constants for the two wind components were 200 hrs and 40 hrs,

with respective input strengths of 0.25 and 0.2 knots2, and wind direction was deter-

mined with a time constant of 50 hours and unit intensity noise. The resulting wind

intensity and direction were added to a predominant wind and predominant direction

biases, respectively, resulting in the disturbance input shown in Figure 33. This is

representative of a weather forecast for winds 220∘ variable 230∘ at 30 gusting 35

knots (or an average summer day at altitude).

As the final time was unknown, a longer time history of wind was generated than

was actually used. The wind disturbance causes the same steering difficulty shown

in Figure 27 for Case Study A. No matter how fast a recursive optimal solution is

calculated, without a position feedback loop to directly compensate, or feedback in

110

0 0.2 0.4 0.6 0.8 1 1.2
20

30

40
Wind Intensity

K
no

ts
0 0.2 0.4 0.6 0.8 1 1.2

200

220

240

Time (hrs)

D
eg

Direction

Figure 33. Wind Disturbance Added to the System

the form of a wind estimate term from integration of path error being fed to the

optimal control problem, the unmodeled wind will always result in a steering error

between the calculated solution and that which would be truly optimal. Once near

the SAM rings, the errors in steering become more critical and a constraint is violated,

as shown in the inset of Figure 34. The magnitude of the constraint violation is a

Figure 34. Steering Failure with Recursive RTOC Control Structure in the Presence
of Wind

function of the size of the wind disturbance, the recursive solution update timing,

and any applied turn rate limit. If the aircraft is allowed an infinite turn rate, the

111

recursive system will always meet the constraint as the update interval approaches

zero (this assumes the vehicle is riding the “outside” of a constraint that is curved

away and does not necessarily hold for attempts to ride the inside of a curve).

For this scenario, minor deviations will likely not mean the difference between

life and death, but there certainly are systems with hard limits (physical terrain,

structures, etc.), and optimal solutions often ride as close as allowable to those limits.

If the ability of the system to change course is limited (i.e. a slow maximum turn rate),

then late steering corrections approaching a constraint can cause large violations.

Besides potential violations, the main point of the exercise is to show that the

path itself is clearly not optimal. Recall from Case Study A that there will always be

steering error in the case of a time-correlated or non-zero mean disturbance. This can

be seen in the bending of the optimal path of Figure 34, just as was the case for the

homing solution of Figure 27. For Case Study A, the analytic solution in Equation 123

showed that the steering error was not a function of the update timing, but of the

problem geometry and the magnitude of the disturbance. This is why faster updates

did not remove the problem, as illustrated in Figure 27b. Increasing the update rate

does decrease the amount of time that you follow the erroneous heading, but there

will only be small changes in the erroneous heading command for the next step until

there is significant deviation from the optimal path, when it is too late.

6.4.3 Integration of Path Error.

To correct the non-optimal bending of the path due to the disturbance bias, the

bias is estimated and included in the optimal control formulation for the next epoch.

Note that, though helpful, it is not required that the source of the bias even be known.

Path deviations may come from poor sensors, wind, poorly rigged flight controls, or

other sources. As in adaptive control, applying the open-loop control and compar-

112

ing the resulting trajectory to the expected trajectory provides the opportunity to

estimate parameters which may be used to update the model for each epoch.

For this implementation, estimates of the wind direction and velocity are required,

broken down into components in the x and y directions. In the absence of a direct

measurement source, this can be produced from the difference between the expected

and actual position in each axis divided by the time step (or an averaged position

over several time steps). A simple estimation filter is used for the demonstration,

with the initial condition determined by the first measurement:

ŵx (tk+1) = ŵx (tk) + kwind [wxmeas (tk)− ŵx (tk)] (129)

An identical formulation is used for the y-axis component. For simplicity, one tenth

of the residual error is applied at each time step (kwind = 0.1), but the Kalman filter

equations could easily be implemented for a more optimal choice for kwind.

With an available wind estimate generated from the closed-loop feedback of the

vehicle state, the assumed system dynamics are updated by adding the appropriate

components into each channel and the recursion is allowed to proceed. Using decision

points similar to those from Figure 32b, where the aircraft is made aware of pop-

up SAM threats, the completed flight path can be seen in Figure 35, and is almost

indistinguishable from the no-wind optimal path. The mission is accomplished in the

presence of changing threats and non-zero mean disturbances.

6.5 Recommended RTOC Structure

Both case studies have shown the detrimental effects of implementing RTOC in

a purely fast open-loop recursive scheme. The current trend in RTOC algorithms

has been to use recent computational speed increases to implement a purely feed-

113

0 50 100 150 200 250

−100

−50

0

50

100

x (nm)

y
(n

m
)

 Start Point
Target
SAM (dashed=>pop−up)
RTOC Solution

Decision
Points

Wind

Figure 35. Complete Flight Path, Wind Compensated for through Estimation from
Position Feedback

forward system with instantaneous optimal solutions only. This eliminates the use of

a traditional inner-loop to maintain the optimal path in the presence of disturbances

in favor of merely replacing the optimal path entirely. Though this can be effective in

simulation, this method is by no means optimal, and it suffers greatly in the presence

of stochastic inputs—particularly those which are non-zero mean or time-correlated.

Individual control problems will always require a designer’s eye for the best control

structure for a particular purpose, but no matter what method of control is selected,

the integration of past error between the expected and actual trajectories must be

included in the determination of future control. For systems guided with RTOC

to handle changing environments (such as pop-up SAMs), a classical inner-feedback

loop is still required for steady-state performance. The inner-loop error signal is

added to the optimal control to maintain the optimal trajectory in the presence of

unmodeled effects and non-zero mean or time-correlated disturbances. When possible,

an additional method includes both this inner loop, and feeding back disturbance

estimates into the optimal control problem, changing the dynamics equations in each

epoch to make the model best match reality.

114

VII. RTOC Algorithm and Implementation Tools

T his chapter addresses the algorithm employed for the real-time optimal control

portions of the research, detailing both the framework of the RTOC imple-

mentation, and the optimal control solution algorithm itself. Completion of the design

process through actual hardware implementation and subsystem integration brought

out several key implementation lessons that will be useful to future RTOC designers.

7.1 RTOC Algorithm

Figure 36 provides the essential decision outline for three control segments required

to land the quadrotor on a power line. For more specifics, the top level shell of the

MatlabⓇ code to execute this loop is provided in Appendix B. The acquisition

Figure 36. RTOC Algorithm Structure

115

segment is completed when the power line is identified by the sensor, and an initial

target estimate and trajectory are initiated. For the flight test, a “shell” was created

with a list of commands to the quadrotor to takeoff, stabilize, and move to a hover

position until the first measurement was received or a timeout occurred, at which time

the aircraft landed. For both the quadrotor and the full power line scenario, since the

initial target estimate and covariance are provided as a guess to the UKF (based on

likely height of the power line and likely sensor acquisition range), an initial trajectory

can also be pre-calculated off-line, and used to seed the trajectory planner’s initial

guess. This is not required, since direct methods are tolerant of poor initial guesses,

but it sets up the system for a fast first solution. After the first pass of the trajectory

solver, the previous epoch’s solution is always used for the initial guess, trimming off

the initial portion that should have already been flown. Once the approach segment’s

main loop is entered, it is executed until the vehicle reaches the approach point with

the required certainty in the target location, at which point the aircraft enters the

flare segment to land.

The heart of the approach segment is the iterative RTOC algorithm. As the

recursive estimation filter provides updated target coordinates, the estimate for the

required approach point, x̂app, is updated, and the trajectory planner then calculates

an update to the optimal path. Each solution is a control state pair, {x∗k(t),u∗k(t)},

t ∈ [tk, tf], that is semi-discrete—every epoch contains the complete state and control

time history for the remainder of the flight. Non-optimal portions of the path are

spliced onto the path as well. These commands give the vehicle a “missed approach”

plan for what to do if the exit criteria for the approach segment are not achieved.

This would be especially significant for times when the measurement data is lost for

a significant length of time. For short periods with no new data, the plan will simply

be updated to initialize with a higher than expected covariance than was planned for

116

in the previous epoch. The quadrotor’s missed approach plan consisted of a simple

landing profile. For the full sUAS, it would likely include circling back to the location

of the last known good measurement, with a further contingency plan after that.

Once the main RTOC loop of the approach segment is entered, note that the call

to the UKF counter-intuitively happens after the trajectory planner. The trajectory

planner consumes most of the loop time, Δtcalc. With a slow sensor update rate,

it is not likely that measurements will arrive between the time the UKF provides

an estimate and the time the trajectory planner begins calculations on the next

epoch. During the trajectory planner calculations, however, multiple measurements

will likely be received, and the target estimate—and thus x̂app—should incorporate

the new measurement data prior to checking to see if the approach point has truly

been achieved and the required certainty has been met.

7.1.1 Initial Condition Validity.

An easily overlooked, but critical, consideration must be taken with respect to

initial conditions. It was outlined in Section 5.3.3 that the initial conditions for each

trajectory planning epoch are set based on the expected future conditions at the time

the solution is planned to be available. The initial condition x0k+1
= x(tk + Δtcalc) is

based on the optimal time history xk, which was solved relative to the target estimate

x̂tk . Note also that many of the constraints on the optimal solution are also set relative

to the target estimate, such as the constraint to stay within an area where the target

will be seen in the fixed camera FOV. Since it is derived from the optimal solution,

x0k+1
will always reside within the constraints, at least as well as they were known to

be for epoch k. However, as the algorithm of Figure 36 progresses, the condition can

occur (and often does, since optimal solutions tend to “ride” on constraints), that

117

when the target estimate is updated to x̂tk+1
and the relative boundaries move, the

initial condition may rest outside of the boundaries for that epoch.

A processing step must be made at every epoch to check all of the initial conditions

for validity, else the trajectory planner will never converge to a feasible solution. For

the quadrotor algorithm, invalid initial conditions were moved to the closest point in

the most current valid flight envelope. This may result in a discontinuity between

the present position and the next commanded position. A smoothing function can be

applied as will be developed in Section 7.1.3 to mitigate difficulties caused by using

a variable calculation time.

7.1.2 Variable Calculation Time.

For simplicity of process integration, researchers working in RTOC typically choose

to update the optimal solution at a fixed loop time, Δtcalc. This allows the flight con-

trol algorithm to look for a new optimal solution at a set time in the flight control

loop. The downside to this approach is that the trajectory planner must be finished

prior to that time, and the calculation time can vary greatly. A very conservative

Δtcalc must be selected, and efficiency is sacrificed as every iteration, by design, takes

the maximum allowable iteration time. Allowing the loop time to be variable increases

the rate of receiving optimal path updates. The downsides are coding complexity for

timing transitions, and the fact that the projected initial conditions may not match

the current commanded conditions at the new epoch.

A variable calculation time was used for this research, and Δtcalc was set as the

expected calculation time, vice the maximum. The efforts of the flight control au-

topilot and the optimization software were processed independently, but threaded

together to allow the optimal solution to be applied as soon as it was available. As an

engineering safety valve, maximum iteration limits were still set for the optimization

118

software, but they were not triggered in the tests conducted once the problem and

constraint formulations were finalized. The concept was that if the optimal solver

was unable to converge on a particular instantiation of the optimal problem, it would

be reset with the current conditions and target estimate, throwing out the previous

solution as its initial guess.

Using a variable calculation time method could potentially impact the application

of optimal solutions that are not available until after the expected amount of calcu-

lation time. For solutions that are available (tk+1) earlier than expected (t0k+1
), the

new portion of the optimal solution is simply appended to the discrete path and the

effects are transparent:

if tk+1 < t0k+1
= tk + Δtcalc,

x∗k+1(t) = {x∗k[tk, tk + Δtcalc −Δt], x∗k+1[tk + Δtcalc, tf]} (130)

For solutions that are available later than expected, the implication is that a

discontinuity is possible in the state and control at time tk+1. The error between the

actual state and the planned state as each old solution is replaced is now a factor

not only of how close the vehicle tracks the planned state, but also depends on the

distance and direction the vehicle has traveled in the amount of time the calculation

took beyond that which was expected. If the calculation took significantly longer

than expected, this discontinuity could be significant.

A similar discontinuity can occur at the approach point. While the trajectory

planner is calculating, new measurements are still being received. Considering this

information, the estimate of the target location will likely have moved while the

trajectory is being applied. The unfortunate cumulative effect is that by the time an

optimal solution becomes available, it travels from a place the vehicle is no longer at,

to a place the target estimate is no longer at. This cannot be solely controlled by

119

increasing the recursion timing, as the target estimate moves in instantaneous steps

as measurements come in. A blending strategy ensures smooth, continuous control

and adds corrections to the path ends.

7.1.3 Correction Blending of Path Ends.

There are optimal methods for resolving the differences in initial and final con-

ditions, most notably those of neighboring optimal control (NOC) [13, 119]. For

systems where these differences are critical, NOC is recommended. Experimentation

with this system suggested that the differences in initial conditions were very small

(as it will be for systems where the calculation time is fairly predictable). During

flight test, the longest calculation time was only 0.11 seconds beyond what was an-

ticipated, leading to very small initial discontinuities. Changes at the “tail” of the

path can be substantial, depending on how far the target estimate moves during each

measurement update.

Stability for the quadrotor system in the face of a discontinuity in commanded

trajectory was never a question, as the autopilot was designed with velocity limits to

be stable for any size command step. The tail of the path was certainly more sensitive

to measurement updates, but until the end-game, the tail portion of the path will

be replaced each epoch before it is actually flown. As a result, the computational

expense of NOC was forgone for a simple and efficient strategy that ensured the path

would always end at the most current target estimate, but without discernible delay.

This correction is critical for the last seconds of the flight, but is a nice feature for

robustness as well, as the path “in hand” is always based on the best information

at the time, and is the best plan to follow in the case of mechanical failure of the

optimal solver, or a delay caused by an inability to converge on a solution.

120

The initial condition discontinuities can occur when the optimal solution for epoch

k + 1, available at tk+1, arrives later than the expected time of t0k+1
. Until tk+1, the

system continues to fly the solution that was produced for epoch k. The final condition

discontinuities occur when the trajectory planner delivers a path for epoch k + 1 to

the assumed target, x̂−tk+1
, that has been updated by the estimation algorithm to x̂+

tk+1

during the calculation time of the path planner. Sample results of the blending can

be seen in Figure 37, where the dark black line indicates the path that is sent to

the vehicle at the actual update time tk+1. The path sent is a composite of the solid

optimal solution at x∗k, the dashed solution at x∗k+1, and the blending correction as a

result of updating the target to x̂+
tk+1

during calculation time.

Figure 37. Cosine Blending Corrections

To produce the blending without generating the sharp changes of trajectory with a

linear blending method, a cosine wave was used to “round the corners” and smoothly

transition the head or tail of the path to the corrected point. The calculations are

described here for the tail of the path with a discrete time series vector, as it is

actually applied in the physical system. The length of the blending segment, tblmax ,

121

is selected by the desired segment time, tseg, limited to the amount of time remaining

if the path is already within the final window:

tblmax = min [tseg, tf − tk − rem (tf − tk,Δt)] (131)

The remainder function (rem) is used to ensure an even division by Δt (tseg is

chosen this way as well). In practice, it was found that blending initial differences

(if they exist) over one second, and final differences over 5 seconds was efficient and

effective. A time vector is then produced:

tbl = [0,Δt, 2Δt, . . . , tblmax]
T (132)

For corrections at the tail of the path, the point at which the new path departs

from the old should be smooth. A correction wave vector from zero to one with a

slow initial transition is created using one-quarter of a cosine wave period, and is

directionally scaled by the amount the target estimate was moved in each state at

the last batch update to create a correction matrix:

Ξ0→1 = 1− cos (�tbl/2tblmax)

Ξcork = Ξ0→1

(
x̂+
tk
− x̂−tk

)T (133)

The correction matrix is then used to update the path segment:

x+
k [tapp − tblmax , tapp] = x−k [tapp − tblmax , tapp] + Ξcork (134)

When this technique is used to correct discontinuities in initial conditions, the

error to be rectified is measured from beyond the moment when the new path becomes

available, at tk+1 + tblmax . During the flare segment of the flight, a similar technique is

122

also used to generate a horizontal profile, providing a smooth path from the approach

point to the point where the vehicle actually hooks the wire. In both of these cases,

both ends of the blend are desired to be smooth, so a correction wave from zero to

one such as the one in Equation 133 is used with a higher frequency (one-half of a

full cosine wave). For the initial condition blending, this allows both the initial move

from the old path and the blend into the new path to both have smooth transitions:

Ξ0→1flare = 1/2− 1/2 cos (�tb/tblmax)

Ξcorflare = Ξ0→1flare (x̂t − xapp)
(135)

7.1.3.1 Process Threading.

The last noteworthy implementation lesson came from timing synchronization

problems stemming from using a flexible calculation time for the optimal path planner

on actual hardware. The UKF, trajectory planner, communication paths, autopilot

processes, and speed control servos are each running iterative loops, but all at different

rates. Threading loops with known rates is not difficult, but the trajectory planner

has a variable cycle time (just over 1 Hz for this application). Working at a much

faster rate (50 Hz), the autopilot must have a buffer of future commands to process,

and a “dealer” function was implemented as a solution to run between the programs

as a storage place for each epoch’s optimal path time history. This allowed the

flight control and optimization algorithms to be carried out on separate processors,

and handled the asynchronous timing between them without resorting to slowing the

process by saving the path to a file. A dealer function can be run at high speeds,

checking for a complete path update (the “deck” if you will) without ceasing to provide

a list of commanded positions and heading at each time step of the autopilot.

When a new optimal path is formed, it is sent via TCP packets using a blocking

protocol to stop processing on the low, variable rate processor until the deck is picked

123

up. This makes any delay less than one time step of the higher rate function (the

dealer runs at 100 Hz), and ensures the new path can be used as soon as it is ready.

A similar method was used in the other direction to get measurements, limits, and

initial conditions into the RTOC process, stopping processing after sending a “ready”

poll, checked for during each loop of the dealer. With this technique, slowing down

the trajectory planner to allow a fixed calculation time is not necessary.

7.2 Radau Pseudospectral Method

The final area of RTOC implementation to address is the actual solution method

for the optimal control problem. Pseudospectral methods have the most advantageous

calculation speed, and are appropriate given the knowledge that a flight trajectory

will be smooth and differentiable. Adaptive grid refinement techniques were applied

to allow segmentation of the problem in the face of potential discontinuities. An open-

source software algorithm known as GPOPS v3.3 was used with the Radau Pseu-

dospectral Method (traditional Radau points, including the initial point) to formulate

the continuous problem into an NLP, and the industry standard SNOPT v7 was used

to solve it. Using open-source software allowed minor modifications for speed when

implemented in real-time. The algorithm used is collected from [90, 35, 34, 39, 5]. The

general concepts of transcription were introduced in Chapter II, including transforma-

tion of time to the interval � ∈ [−1, 1] to make use of Gaussian quadrature. On that

interval, collocation is performed at the Legendre-Gauss Radau points, which may

be obtained by first producing the Legendre polynomial, expressed with Rodrigues’

formula as:

PN(�) =
1

2NN !

dN

d�N

[(
� 2 − 1

)N]
(136)

where N is the number of nodes desired to collocate at.

124

The actual collocation points, �k, are the roots of PN(�) + PN−1(�), which will

always contain the initial point, �1 = −1, and where �N < 1. The quadrature weights

associated with these points are solved for off-line with an algorithm based on the

LGR Vandermonde matrix, and saved for rapid use during the real-time application.

Note that for these weights, wi, and polynomials, �p, of degree at most 2N − 2:

∫ 1

−1

�p(�) d� =
N∑
i=1

wi�p(�i) (137)

The discretization points include all of the collocation points and the end point,

�N+1 = 1. Using Li, i = 1, . . . , N + 1 as a basis, accurate approximation of each of

the nx states, xj, can be performed with a polynomial of at most degree N :

xj(�) ≈
N+1∑
i=1

xijLi(�) j = 1, . . . , nx (138)

The basis elements are found using the standard Lagrange interpolating polynomial

definition:

Li(�) =
N+1∏

j=1,j ∕=i

� − �j
�i − �j

(139)

Collocation will require comparing the known derivative for each state from the

system dynamics equations with the derivative of the approximating polynomial for

each state at each collocation point. Differentiating each state component, xj, at each

collocation point, �k, gives:

ẋj(�k) ≈
N+1∑
i=1

xijL̇i(�k) =
N+1∑
i=1

Dkixij, Dki =L̇i(�k) (140)

The components are assembled into the differentiation matrix, D ∈ ℝN×N+1,

with a row for each collocation point and a column for the derivatives of each of the

N+1 Lagrange polynomials evaluated there. Note that this matrix may be calculated

125

entirely off-line with only the knowledge of the number of nodes to be used in the

solution, allowing for extremely efficient calculation of the derivative of each state at

every collocation point in an N × nx matrix that can be written:

ẋj(�i) ≈ (DX)ij i = 1, . . . , N j = 1, . . . , nx (141)

Since the polynomials for each state are at most degree N , the derivative approxi-

mation is exact. The matrix X ∈ ℝN+1×nx is made of the coefficients of Equation 138

and includes row vectors of the state components at every discretization point:

Xi ≡ X(�i) =

[
xi1 ⋅ ⋅ ⋅ xinx

]
i = 1, . . . , N + 1 (142)

The nu dimensional controls can also be expressed as row vectors of all the control

elements at a particular time, but this is only necessary at the collocation points:

ULGR
i =

[
ui1 ⋅ ⋅ ⋅ uinu

]
i = 1, . . . , N (143)

To complete the conversion from the continuous optimal control problem into

the static NLP, the dynamic constraints, f , from Equation 88 on page 82 are ex-

pressed as a matrix formed from the state values at each of the collocation points,

F
(
XLGR,ULGR

)
∈ ℝN×nx such that:

Fij
(
XLGR,ULGR

)
= fj

(
XLGR
i ,ULGR

i

)
i = 1, . . . , N j = 1, . . . , nx (144)

where:

X =

⎡⎢⎣ XLGR

XN+1

⎤⎥⎦ (145)

126

The NLP is then defined as minimizing the approximation of the continuous cost

function:

JLGR = Γ (X0, t0,Xf , tf) +
tf − t0

2

N∑
k=1

wk퓛(Xk,Uk, �k; t0, tf) (146)

The original dynamic constraints are now a series of static constraints for every

state at every node:

DX− tf − t0
2

F
(
XLGR,ULGR

)
= 0 (147)

with the original constraints and boundary conditions now evaluated discretely as:

 (X0, t0,XN+1, tf) ≥ 0 (148)

C (Xi,Ui, �i; t0, tf) ≥ 0 i = 1, . . . , N (149)

7.2.1 Solving the NLP.

The solver SNOPT introduces slack variables to convert all constraints to equality

conditions. A modified Lagrangian is formulated by augmenting the cost function

with Lagrange multipliers applied to each constraint, and the optimality conditions

are found by taking the partials of the Lagrangian with respect to the states, controls,

and multipliers and setting them to zero. Though GPOPS provides a very effective

automatic differentiation package, analytic derivatives were used as the most accurate

and efficient method of gradient determination. The trivial boundary conditions are

omitted, but the remaining analytical derivatives are summarized in Table 1.

With the modified Lagrangian, SNOPT uses a two-tier iteration. Simplifying,

major iterations linearize all constraints with a truncated Taylor series, evaluating

the Jacobian for the constraints at the iterate point and formulating a new subprob-

lem with a quadratic approximation of the modified Langrangian and the linearized

127

constraints. Minor iterations solve each subproblem with a reduced Hessian active-

set method. This method seeks to reduce the computational expense of calculating

the Hessian by freezing some of the variables, and moving along the feasible curve

in the direction of the reduced gradient to minimize the cost function. Reaching a

minimum, more of the variables are allowed to move. Upon reaching a solution, a La-

grangian merit function is formed, and a line search along that function is made from

the subproblem solution point to a new point, where the constraints are re-linearized

and the process continues until tolerances of the major iterations are met.

Table 1. Non-Zero Analytic Derivatives

Equation Non-Zero Partial Derivatives

Γ = tf
∂Γ
∂tf

= 1

퓛 = uTWuu
∂퓛
∂ux

= 2wuxux
∂퓛
∂uz

= 2wuzuz

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ż
ux
uz

sin2�
Δtmeas�2

��
2

cos2�
Δtmeas�2

��
2

− sin� cos�
Δtmeas�2

��
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∂f1
∂ẋ

= ∂f2
∂ż

= ∂f3
∂ux

= ∂f4
∂uz

= 1
∂f5
∂x

= 4xrzr
Δtmeas�2

��
6

∂f5
∂z

=
−2zr(x2r−z2r)
Δtmeas�2

��
6

∂f6
∂x

=
2xr(x2r−z2r)
Δtmeas�2

��
6

∂f6
∂z

= 4zrx2r
Δtmeas�2

��
6

∂f7
∂x

=
zr(z2r−3x2r)
Δtmeas�2

��
6

∂f7
∂z

=
xr(x2r−3z2r)
Δtmeas�2

��
6

C1 = tan−1
(
zt−z
xt−x

)
∂C1

∂x
= zr

�2

∂C1

∂z
= −xr

�2

1 = Pxxmax [�1(tf)�2(tf)− �2
3(tf)]− �2(tf)

∂1
∂�1(tf)

= Pxxmax�2(tf)
∂1

∂�2(tf)
= Pxxmax�1(tf)− 1

∂1
∂�3(tf)

= −2Pxxmax�3(tf)

2 = Pzzmax [�1(tf)�2(tf)− �2
3(tf)]− �1(tf)

∂2
∂�1(tf)

= Pzzmax�2(tf)− 1
∂2

∂�2(tf)
= Pzzmax�1(tf)

∂2
∂�3(tf)

= −2Pzzmax�3(tf)

128

7.2.2 Adaptive Grid Refinement.

Clearly, with constraints defined for the derivative of every state at every node in

addition to the typical constraints of an optimal control problem (boundary, path,

event, etc.), the dimensionality of the NLP increases greatly with the number of

nodes. Using a small number of nodes provides a fast solution, but potentially at

the cost of accuracy. For this dissertation, Darby’s adaptive griding, introduced in

Section 2.2.2.1, is incorporated [21]. The total number of nodes is divided into s

segments with Ns nodes in the respective segment:

N =
S∑
s=1

Ns (150)

Path constraints and boundary constraints do not change, but the collocated dynamic

constraints must be modified to reflect transforming each segment of times t ∈ [ts−1, ts]

to � ∈ [−1, 1]:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D1 0 ⋅ ⋅ ⋅ 0

0 D2 ⋅ ⋅ ⋅ 0

...
. . .

...

0 ⋅ ⋅ ⋅ 0 DS

⎤⎥⎥⎥⎥⎥⎥⎥⎦
X−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t1−t0
2

I1 0 ⋅ ⋅ ⋅ 0

0 t2−t1
2

I2 ⋅ ⋅ ⋅ 0

...
. . .

...

0 ⋅ ⋅ ⋅ 0 tS−tS−1

2
IS

⎤⎥⎥⎥⎥⎥⎥⎥⎦
F = 0 (151)

Total cost now becomes a sum of the segment costs, and continuity is ensured

by forcing each state to start a segment with the value it had at the completion of

the prior segment. Formulating the problem in this manner actually increases the

sparsity of the NLP Jacobian, resulting in less computational time.

The risk of the method is loss of spectral accuracy with fewer nodes in each

segment. To check for this, the collocation constraints in Equation 147, which are

mandated to be zero at all of the collocation points, are evaluated in between the

129

collocation points (ideally, the equations should be zero everywhere, but they are

only constrained at the nodes). Midpoints between collocation points are found:

t̄i =
ti + ti+1

2
i = 1, . . . , NS − 1 (152)

The states are evaluated at the midpoints using the Lagrange polynomial approxi-

mations, and the controls are approximated with cubic interpolation at the midpoints,

resulting in: X̄, Ū ∈ ℝNS−1×nx . The differentiation matrix is the square Lobatto ma-

trix, D̄ ∈ ℝNS−1×NS−1, allowing a midpoint residual matrix to be formed:

R =

∣∣∣∣D̄X̄− ts + ts−1

2
F
(
X̄, Ū, � ; ts−1, ts

)∣∣∣∣ ∈ ℝNS−1×nx (153)

Note that ∣⋅∣ indicates the element-wise absolute value. Ideally, the residuals would

all be zero and the dynamic constraints would perfectly match the derivatives of the

state approximations between collocation points. If this is not the case, the largest

value in each row is collected into a vector, representing the greatest error with respect

to the dynamics for each segment. The arithmetic mean of these maximum errors is

taken, and the errors are scaled by the arithmetic mean. This allows easy comparison

of the errors. For the case where one error is significantly higher than the rest, a

problem at a specific time is assumed, most likely a result of a discontinuity. The

number of segments is therefore increased and another iteration is performed, with a

segment break at the problematic time to increase nodal density there. Uniform-type

errors exist when all error values are relatively equal. If this is below tolerances,

the solution is complete. If not, a poor approximation is assumed and the total

number of nodes is increased for the next iteration, resulting in a higher order state

approximation.

130

VIII. Quadrotor Vehicle Description and Flight Control

Development

“You go to war with the army you have, not the army you want”

—Former Secretary of Defense Donald H. Rumsfeld

V erification of the effectiveness of the RTOC algorithm beyond simula-

tion was performed with an in-house, custom built quadrotor helicopter

(Figure 38), designed at the Air Force Institute of Technology’s (AFIT) Advanced

Navigation Technology (ANT) Center. The flight control system for the aircraft was

Figure 38. Quadrotor Helicopter

designed with a much simpler purpose in mind, and significant modifications had to

be made in order to make the power line landing possible. This chapter details the

description of the vehicle, as well as some of the flight control challenges and solutions

used for the flight test.

131

8.1 Vehicle Description

The quadrotor consisted of a 0.607-m square frame with four 22.86-cm blades

driven by Goldline AXI 2212/20 brushless motors. The motors were regulated with

Phoenix 25 speed controllers and powered by two Li-Polymer 2200 mAh, 11.1V, 3-cell

batteries. A Pico-ITX (Linux Ubuntu) with a VIA C7 1-GHz processor with 1-GB

of RAM on top of the aircraft was used for data collection and processing of images

from a Logitech Quickcam Pro 9000 webcam. As the line detection algorithm was not

complete, the bearing measurements for the flight test were provided by the Vicon

system and corrupted by noise, vice using the camera. Accelerations were measured

with an Analog Devices ADIS 16355AMLZ MEMS-IMU, and inner-loop flight control

processing was performed on a custom PIC-24 microcontroller circuit board. Outer-

loop RTOC guidance was provided by an algorithm running in MatlabⓇ R2009a

(Microsoft XP), passed to a ground station (Linux Ubuntu) via a dealer function.

Mid-loop control commands were generated within the ground station custom C code

using a GTK graphics package, and communication to the vehicle was across a 2.4-

GHz XBee Pro serial modem. Both computers were Dell 360 2.0-GHz laptops with

2-GB of RAM. Position feedback and flight test data was provided with a Vicon

Tracker motion capture system using 60 near IR (∼750-nm) cameras. A schematic

of the overall system is shown in Figure 39.

Thrust for the quadrotor is supplied by four independently controlled, fixed-pitch

propellers. The propellers in opposing corners spin the same direction, as shown in

Figure 40. Altitude is controlled by varying the thrust from all four motors simulta-

neously. Pitch and roll are controlled by increasing the thrust of both motors on one

side of the applicable axis, and decreasing the thrust on the other side. The total

thrust remains near constant, maintaining altitude at small angles. Since both sides

have one propeller turning clockwise and one turning counter-clockwise, the total

132

Figure 39. Quadrotor System Schematic

torque also remains the same, maintaining heading. Heading is controlled with an

increase and decrease of opposing pairs, maintaining total thrust while changing the

total torque.

Figure 40. Quadrotor Opposing Pitch Propellers

8.1.1 Autopilot Overview.

Based on the RTOC structure developed in Chapter VI, the autopilot architecture

was designed with three main loops. The inner stabilization loop produces the actual

Pulse Width Modulation (PWM) signals that drive the motors. Inputs are the body

133

axis angular rate measurements from the on-board IMU, approximations of angular

accelerations based on a discrete, first-order lag model, and error commands in the

appropriate channels from the portion of the controller in the ground station. The

specific structure, gain placements and values, vehicle moments of inertia, and such

can be found in the Simulink diagrams and initialization file in Appendix A, but

a simplified control flow diagram is shown in Figure 41. The inner feedback loop

Figure 41. Primary Autopilot Loops

regulates the angular rates and accelerations to zero, while accepting the autopilot

commands of the mid-loop, which compares the current position and heading with

state vector that is commanded at that time from the most current trajectory time

history of the path planner. The path planner takes the measurements from the

bearing sensor and plans a new optimal path, using the last optimal solution as an

initial guess.

8.2 Flight Control Modifications

The quadrotor flight control system was originally designed to hover at a point.

The point could be moved with hand-controlled inputs. Actual steady-state tracking

134

of that point was extremely poor, but immaterial, as the aircraft was flown visually.

If the vehicle was low, the commanded point was moved up—how close the vehicle

actually was to the commanded hover point was unknown.

Several flight control modifications were required to enable automated path control

of the aircraft and the ability to fly to an exact point with no steady-state offset.

Some suboptimal decisions had to be made that led to a design that was functional,

but incomplete. The actual quadrotor used was the “spare,” as the primary aircraft

suffered a catastrophic crash just prior to commencing this research due to an error

in a line of code. With a fragile, naturally unstable aircraft and no spare parts, a

minimalist approach was taken to control development, changing the original design

and code as little as possible. The decision to limit the desired flight control work was

validated somewhat by an irreplaceable IMU on the custom servo-sensor board failing

several times prior to takeoff (luckily) during testing, and eventually burning out the

entire board a few sorties after the last of the flight tests presented in Chapter IX.

Due to the necessary caution, the ideal course of changing the control scheme to feed-

forward control based on the optimal solution was not attempted, choosing instead to

simply schedule the motion of the hover point in accordance with the optimal path.

Clearly, this will result in late turns and overshoots during more aggressive maneuvers

as the commands to turn are not applied until an error already exists between the

vehicle and the path. This is most noticeable in the horizontal channels, as the control

of the engines does not directly apply force in that axis, but must first generate and

integrate angular rate.

8.2.1 Simulation.

All flight control work was developed in simulation to minimize risk. Without

an aircraft model or any documentation of the flight controls, the Simulink model in

135

Appendix A was created by backing out the ground station C code and the code from

the servo-sensor board on the vehicle, and applying kinematic and dynamic equations

from first principles as detailed in [83]. These equations were modified slightly based

on comparison of expected flight profiles to flight test data, adding a drag term in

each axis. The drag component was more pronounced in the vertical axis at the slow

speeds of the quadrotor, reflecting both propeller drag and a heaving derivative effect

common in helicopter models. The heaving derivative reflects the fact that as vertical

velocity increases, the angle of attack on the blades decreases, resulting in less lift.

The resulting moment equations took body axis moments, [L M N]T , which were

known from the engine model and respective locations of each motor, and integrated

them to find the body axis angular velocities, [p q r]T . The equations were simplified

for the quadrotor, which can be considered symmetric in both the xbzb and the ybzb

planes:

ṗ =
1

Ixx
[L− qr (Izz − Iyy)] (154)

q̇ =
1

Iyy
[M − rp (Ixx − Izz)] (155)

ṙ =
1

Izz
[N − pq (Iyy − Ixx)] (156)

The body axis angular velocities were then integrated to find the Euler angles:

�̇ = q cos�− r sin� (157)

�̇ = p+ q sin� tan � + r cos� tan � (158)

 ̇ = (q sin�+ rcos�) sec � (159)

With the only forces being the thrust from the propellers, Fz, and a first-order

drag force approximation, the force equations were integrated to find the body frame

136

velocities [u v w]T :

u̇ = rv − qw − g sin � − kDxu (160)

v̇ = pw − ru+ g cos � sin�− kDyv (161)

ẇ = qu− pv + g cos �cos�+ Fz/m− kDzw (162)

where m is the mass and g the gravitational constant. With the body frame velocities

and Euler angles, the final simulator step is to rotate to the navigation frame and

integrate for position:

⎡⎢⎢⎢⎢⎣
ẋ

ẏ

ż

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
C�C S�S�C − C�S C�S�C + S�S

C�S S�S�S + C�C C�S�S − S�C

−S� S�C� C�C�

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
u

v

w

⎤⎥⎥⎥⎥⎦ (163)

where C = cos , etc.

With the simulator established, the flight control structure was added. A few of

the interesting features are summarized below. For full detail on the flight controls

and specifics such as gains and moments of inertia, see Appendix A.

8.2.2 Vertical Control Channel.

The system was initially controlled with a proportional-derivative (PD) scheme,

using a nominal throttle trim setting to offset the weight, and adjusting all four en-

gines around this setting to correct vertical position error. Though effective for hand

flying, significant steady-state error existed between the commanded and actual ver-

tical positions, as show in Figure 42. The nominal throttle setting was clearly too low

to account for the weight of the vehicle. To avoid unnecessary tuning flights, a force

test stand was built to model the non-linear relationship between thrust and PWM

137

Figure 42. Need for Vertical Error Integration

command to more accurately predict the motor performance. This was helpful, but

still insufficient for a precision landing system without active error integration, as the

true nominal throttle trim will vary based on loss of battery strength. Furthermore,

if the nominal throttle trim is set correctly for flight, the aircraft will “leap” during

takeoff, when ground effect makes the propellers much more efficient.

The nominal thrust was set low to match the performance in ground effect for

a good takeoff, and a discrete error integrator was added to correct it during flight.

Integration is by nature destabilizing, so a very conservative gain level was selected

from a root locus plot of the Simulink model linearized about a hover condition. For

the full land-on-a-wire test flights, the aircraft was flown to a specific hover position

before the run, which started at the 30 second point, so there was ample time to find

the correct nominal trim. With additional test sorties, this could be improved.

To avoid integrator windup prior to takeoff while the ground station controller

is running, “reset” logic was added to re-zero the integrated error value when the

motors were not engaged. As will be discussed in the horizontal channel, saturation

limits were applied on both the integrated error value and the amount of proportional

vertical error visible to the system in order to limit the maximum vertical speed.

138

8.2.3 Horizontal Control Channels.

The horizontal channels are controlled by differential power to produce either pitch

or bank rate. Position errors in the navigation frame are rotated by heading into the

body frame with a simple direction cosine matrix, with the assumption that bank

and pitch angles are small:

⎡⎢⎢⎢⎢⎣
Δxb

Δyb

Δzb

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
cos sin 0

− sin cos 0

0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Δx

Δy

Δz

⎤⎥⎥⎥⎥⎦ (164)

Velocity in the navigation frame is calculated considering the position change in

a single Vicon capture frame over the frame interval, likewise rotated into the body

axis. Originally, PD control on position error was applied with angle feedback of � or

�, respectively. This resulted in acceptable performance for hand flying, but in terms

of inertial precision, the aircraft was ±0.5-m from the commanded hover position at

any point in time (for comparison, it is desired that the vehicle be within ±0.038-m of

commanded position to pass through the vertical “mouth” of the hook, assuming zero

uncertainty in the estimated position of the wire). Integral control with saturation

and reset logic were added, and gains were tuned for performance.

The original design did not have a hard limit bank or pitch angle, as it was

designed to be hovered in a small flight area with a hand controller that could only

make small changes in commanded position. With a large flight area and the prospect

of a (newly designed) automated command system, the potential existed to command

a large change in position, which could flip the vehicle over. Saturation limits on

the amount of position error entering the command channel were added. Because

each channel was dampened with velocity feedback, the desire to move the aircraft

to a point was counter-balanced by the desire to keep velocity at zero. Saturating

139

the position error input effectively set a maximum velocity limit. With the system

balanced at steady-state, the desired maximum velocity value for both axes could be

adjusted for the velocity and proportional feedback gains to determine the required

level of saturation (the level of saturation required to produce the right maximum

velocity—Figure 67 on page 178 may make this more clear):

xerrsat = Vmaxx ∗ kvx/kpx (165)

Prescribing a maximum horizontal velocity value indirectly limits the bank and

pitch angles. The quadrotor needs only a small horizontal thrust component to begin

moving from a hover, as it is delicately balanced. Once moving to a steady-state

velocity, the bank is removed as the aircraft “coasts,” much like a puck on an air

hockey table. At the low speeds used for this research, a very minor amount of bank

or pitch (approximately 10∘) was required to reach steady-state velocity, and only a

negligible amount is required to overcome drag and sustain it, as can be seen in the

step commands of Figure 43. With bank and pitch angles limited by the position

error saturation, the aircraft cannot flip over, regardless of the size of an erroneous

input. As an additional benefit, the low pitch and bank requirements work out well

for a vehicle with a fixed camera that needs to keep the target in the field of view.

Another feature installed was a variant of anti-windup tracking dubbed “sneak-

back” logic. Essentially, when the aircraft is flying to a point beyond the position

error saturation distance, the integrator will saturate in the same direction. When

the aircraft reaches the point, a large overshoot will occur. To reduce this effect, the

integrator is smoothly pulled back toward zero whenever the position error is on or

near its limit. With this implementation, a design decision must be made with regard

to the maximum velocity limit. If the gain balance to achieve the correct steady-state

velocity is set considering a saturated integrator input, then the steady-state veloc-

140

Figure 43. Maximum Velocity Step Commands

ity will be below the maximum as the integrator gets pulled back to zero. If the

gain balance is set considering the integrator output to be zero, the vehicle will have

the desired maximum velocity at steady-state, but may overspeed briefly while the

integrator settles. The latter option was considered acceptable and implemented.

8.2.4 Heading Control Channel.

The least amount of work was accomplished in the heading channel, and it is the

least well controlled. Figure 44 shows representative heading error on an early flight.

Error integration was necessary and added, with the associated reset logic and satura-

tion. Due to the natural damping when controlling with torque, derivative action was

not required, resulting in a proportional-integral (PI) channel. The feedback gains

were increased based on gain margin in the linearized Simulink model and fine tuned

in flight test. A clear difficulty, in all channels, is the fact that control is modeled as

decoupled, but isn’t in reality—especially with respect to errors, which are typically

141

Figure 44. Poor Heading Control

not aligned with an axis. Bending of the aircraft body, imbalanced power output,

and misaligned propellers contribute to the steady-state errors that are seen in Fig-

ure 44. Integration can balance out the errors in a hover, but it’s just that—perfectly

balanced, and susceptible to the slightest disturbance. Every time the power settings

are altered for any maneuver or change of orientation, the error balance is changed.

8.2.5 Automated Flight.

In order be able to command the system automatically, an automatic flight mode

was added that accepted command inputs from the dealer function, shown in Fig-

ure 39, as if they had come from the hand controller. The dealer received the optimal

path time history from the path planner, and determined the current location in the

series. Line numbers with a constant update rate were used vice true time, to avoid

clock synchronization errors between the computers. The correct commands for po-

sition and heading were then sent to the ground station, while the measurements of

142

the wire position and the vehicle’s current measured location were returned to the

path planner.

Figures 45 and 46 show one of the early paths, flying in circles with varying altitude

followed by level circles to test the vehicle’s ability to follow a constantly arcing path.

At this point, the tracking had been markedly improved, but the heading channel

Figure 45. Automatic Flight Control Development Test

appeared to have had much more difficultly with the level circles than the slanted

ones, though the reason is unclear. The larger heading errors actually begin 18 seconds

prior to the level-off, so it may not be altitude related.

For safety, a “hover” mode was added that allows an observer pilot to switch back

to hand controller commands, with a second actuation zeroing out the integrators, in

case they were the cause of the needed takeover. At the moment the hover mode was

143

(a) Varying Altitude, t=25 sec to t=88 sec (b) Level Circles, t=88 sec to t=154 sec

Figure 46. Flight Path for Automatic Flight Control Development Test

activated, the hand controller commands were zeroed out, and the current position

and orientation were captured. The captured positions were then continually added

as an offset to the commands from the hand controller, resulting in a hover that could

be landed manually.

8.2.6 System Identification.

The derived simulator had far less damping than the real aircraft, making use of

the simulator for gain selection of little value. A data capture algorithm was written

and installed on the quadrotor, allowing flight data to be run through the simulation

for comparison of expected and actual performance. Figure 47 shows a safety flight

flown in to a simulated wire position compared to the uncompensated simulation

output for the same commanded path.

System identification techniques were used to add a compensator for the errors,

and the aforementioned drag terms were added. In hindsight, the model deficiencies

are most likely due to the fact that the dampening torque effect from the spinning

propellers was not accounted for. Additional terms should have been added for this

in Equations 157-159. As performed, however, the compensated system did a much

144

Figure 47. Simulator without Modification to Match Flight Test Data

better job at matching the true system, as shown in Figure 48. This made both gain

selection and design of the flare mode much more effective.

8.2.6.1 Flight in the �AVIARI.

Full-scale flight tests were accomplished in the Micro Air Vehicle Integration and

Application Research Institute (�AVIARI) indoor flight test facility. Several consid-

erations had to be addressed to enable flight in new facility, most of which had to do

with networking with different computers. The Vicon software was also different be-

tween the ANT Center and the �AVIARI, but the actual data stream is consistent, so

only minor software changes were required, along with DCM changes for the different

reference frames. The hand controller code also had to be modified, as the original

145

Figure 48. Simulator Modified to Match Flight Test Data

method used each press of a button to move the hover point a percentage of the flight

arena size (the trim accumulators on the hand controller only moved between -1 and

1). As the arena got 10 times larger, the hand controller became 10 times as sensitive.

Logic was added with a transformation to scale each button actuation to an actual

distance.

Lastly, a hook was fashioned from welding rod as a simple method of attaching

the quadrotor to the wire. The very flexible nature of the hook in concert with the

vibration of the quadrotor excited a large harmonic oscillation. Several iterations of

dampening lines were added to the hook until the flight characteristics were satisfac-

tory. These lines can be seen in Figure 16 on page 53.

146

IX. Results and Analysis

“In science, you can lie and fudge the data because you don’t have to make
anything work. In engineering, the product is the proof of your honesty.”

—Pepper White

T he functionality of the RTOC system was validated through extensive simula-

tion during development, and verification of the algorithm’s ability to accom-

plish the mission of landing on a wire was accomplished through flight test. The flight

test profiles were performed in the �AVIARI, operated by the Air Vehicles Directorate

of the Air Force Research Laboratory (AFRL/RB), and shown in Figure 49. The in-

Figure 49. AFRL/RB �AVIARI Indoor Flight Test Facility

door flight test lab allowed use of the Vicon camera system, a flight requirement of

the available research vehicle. Though the �AVIARI is very large for an indoor flight

test lab, the true power line landing scenario is larger, and the geometry was scaled

to fit within physical limitations. An average medium-voltage (distribution) utility

pole is approximately 10-m high, but the safe maximum height to maintain visibility

by a sufficient number of Vicon tracking cameras in the indoor flight facility was

5.5-m. The walls of the facility dictated a maximum range of approximately 18-m,

147

well inside of the expected range at which a power line could be confidently identified

with a webcam type sensor. Correspondingly, the flight test was scaled down in size

to fit the �AVIARI, and the vehicle speed was reduced to produce a likely approach

segment time of about 30 seconds.

9.1 Simulation Results

In order to test the robustness of the system and the reliability of both the es-

timation and optimization algorithms, a Monte Carlo-style simulation of 1000 runs

was performed on the same scale as the flight tests to maintain comparability. The

run number was pre-selected, and the resulting solution parameters of average loop

time, mean error, and final directional covariance were confirmed to have converged

to within 10−3 of their respective units. The problem geometry was varied by moving

the actual target location from the initial estimate:

xt∼N (x̂t0 , 49 m2) (166)

zt∼N (ẑt0 , 4 m
2) (167)

Outliers were limited to stay within the allowable flight space vertically and high

enough to maintain the approach point above the allowable floor. The initial pickup

range was also limited to a minimum of 12-m to provide some room to maneuver

(without some limit, the power line may unrealistically initialize behind the vehicle).

Real-world considerations must include a contingency plan for a “go-around” for

exceptionally late or missed sensor pickups. The difference in vertical and horizontal

certainty reflects the fact that more knowledge will exist concerning the height of the

power line than of the initial sensor pickup range. For a full-scale system, actual

sensor capability, engineering judgment about likely power line height variance, and

148

the amount of confidence in the mapped power line locations should be included in

the selection of the initial covariance, P0. Disturbances from effects such as wind

gusts were added with a bivariate Gaussian distribution, adding a random variance

in the vehicle location sampled at the time of each measurement, and measured by

the own-ship navigation system:

[xmeas zmeas]T ∼ N2

(
[x z]T , 0.25 m

)
(168)

The simulation was initiated with the conditions found in Table 2. The shape

of each instantaneous optimal trajectory varies based on the information available

to the system at the time. Figure 50 shows typical solutions, with specific problem

parameters varied to highlight key features. The results show complete trajectories

for the remainder of the flight, as are provided at every epoch by the path planner.

The characteristics shown are helpful in creation of heuristics to mimic the optimal

solution, potentially a requirement for sUASs without the processing capacity for

RTOC. All maneuvering in the simulation is restricted to the vertical plane. Gener-

ally, the length of the run (note the asymmetric axes lengths) allows a greater amount

of information to be collected about the vertical position of the target, requiring the

trajectory planner to move away from the initial LOS angle.

Table 2. Simulation Limitations and Initial Parameters

Parameter Value Parameter Value
Est. Loop Time 0.9 s Pxxmax ,Pzzmax 0.02 m2

�min, �max −30∘, 40∘ App. Offset (m)
[
−2 0.4

]T
�� 0.071 rad2 x̂t(m)

[
9 4

]T
∣vx∣max , ∣vz∣max 0.5 m/s x̃0

[
−8 3 0 0 P−1

xx0
P−1
zz0

0
]T

∣ux∣max , ∣uz∣max 0.5 m/s2 P0(m2)

[
80 0
0 80

]
zmin, zmax 0.8, 6 m

149

(a) Typical Solution Shape (b) Speed and Accel Constraints only

(c) 30∘ Camera FOV (d) Relaxed Final Covariance Requirements
(Pxxmax = Pzzmax = 0.2 m2)

Figure 50. Instantaneous Trajectory Shape Sensitivity to Constraints

Figure 50a shows the characteristic shape for the typical initial conditions, where

the system is directed to climb to the maximum allowable altitude, or ceiling, for a

“high look,” moving to obtain a “low look” at the end-game where the measurements

are more effective due to the close range. This path visually increases the information

elements seen in Equation 73 on page 67. FOV limitations keep the vehicle in a

position where the target will be visible to the fixed camera, and a “safe approach”

line is enforced to keep the aircraft from flying past the desired approach point and

backing up. Though certainly within the capabilities of the quadrotor, it was deemed

150

unsafe to intentionally proceed inside the approach point until the certainty in the

actual power line position was within the required limits.

The second panel, Figure 50b, shows an instantaneous flight trajectory with the

allowable flight envelope limitations removed, maintaining the speed and acceleration

limits in the dynamic constraints. The final required target position certainty was

increased, to highlight the fact that the optimal solution may intentionally include

transients inside of the safe approach line if not enforced. For the submarine formu-

lation of the problem, this trajectory shape represents an optimal horizontal solution

that would be encountered on a larger scale, with the exception of the last transient,

which would be avoided by implementing a circular path constraint to stay beyond

the opponent’s maximum torpedo range until the target position is resolved. All of

the characteristics of the vehicle are simply parameters that can be set as appropriate

for an individual system. The third panel, Figure 50c, shows the path solution for

a camera with a more narrow FOV (30∘). The most extreme target approach angle

is held as long as necessary. For times when the final certainty requirements do not

differ greatly from the current covariance estimate, only a small excursion is necessary

to gain the needed amount of information, as shown in Figure 50d.

Obviously, every active parameter in the optimal control problem contributes to

the final shape of the trajectory, but the sensitivity of a few dominant parameters

found during the research was considered noteworthy. The immediate move away

from the initial LOS angle is predictable. The “hook” at the end of the path shown

in Figures 50a-50c is also dominant, taking advantage of the wide angular spectrum

at close range for the greatest increase in information. For a workable heuristic, the

initial move away from the first LOS angle provides the range observability necessary

to determine when to make the “hook,” which could be initiated at the 6-m remaining

point at this speed. Though the characteristic shape is the same, the range at which

151

the “hook point” is executed is non-linear and not necessarily directly scalable to a

larger/faster problem. To find it for a particular system, the algorithm should be run

in simulation with system specific limitations and expected conditions.

9.1.1 Local Minima.

The geometry of the problem creates a bimodal solution space. With �0 = 0,

symmetric boundary constraints, no initial vertical velocity, and the approach point

level with the target, an optimal path that initially moved up would have a mirrored

path with an initial move down and the same total cost. Global favorability of a “high

road” versus a “low road” local minimum is dependent on the initial state when the

first measurement becomes available. For heuristics, the overall direction tends to be

high if the initial position of the vehicle is low relative to the target, and vice versa.

Stronger factors are initial vertical velocity (tends to continue in the initial direction),

and the vertical difference between the approach point and the actual height of the

target (if the approach point is low, the initial move is typically high and vice versa—

note the final approach point difference between Figure 50c and Figure 50d). The

amount of maneuvering room between the altitude limits and the estimated target

position estimate also impacts this decision.

For this system, experience has shown that the “high road” is the global minimum

for the given target height, with the greatest sensitivity being to the approach point

being set below the target height to account for the height of the hook above the ve-

hicle. A biased guess is not necessary to find the global minimum, and only the initial

and final points are used to initialize the system. As a practical method for a system

with less certain characteristics, the global minimum for the initial target position

guess can be found by checking both initial directions a priori through simulation

with the planned initial target estimate and covariance, using initial path guesses bi-

152

ased in each direction (the algorithm can, at times, be fooled into a local minimum in

this manner). The global solution found should be the seed for the initial calculation

of the real-time path planner, which will actually begin to fly this solution between

the time the first measurement is received and the time the first optimal trajectory

is produced, which will have been solved for using the initial velocity in the correct

direction expected at time t20 . Once the initial trajectory has been begun, switching

to the other minimum becomes costly due to the control required to overcome the

initial vertical velocity, and the increased percentage of the path that is left near the

“middle” of the flight envelope, near the target altitude. Flight in this area con-

tributes little information about the range to the target, which is the “long pole in

the tent” in terms of the optimization.

For the second flight test, the initial target estimate was intentionally fabricated

to make the “low road” the initial global minimum. This was done by intentionally

setting the initial guess too close to the ceiling limit to allow the vehicle room to ma-

neuver above it. The “low road” scenario was demonstrated because it could possibly

be encountered with a significantly erroneous target position estimate, though this is

unlikely. Note that in the lab, the initial relative position of the power line was fixed

physically, and the initial target position estimate was varied to cause differences in

path selection. The simulations were set up to mimic this, producing several unlikely,

but possible, scenarios where the target was very near the floor, or in the upper

“corner” of the flight envelope, such as in Flight Test #2. This was a good test of

robustness to potentially poor target estimates, but in a true sUAS landing scenario,

the initial relative target estimate will be fixed (based on the expected parameters of

the sUAS at initial sensor pickup). The initial solution will therefore be the same for

every run (both initial directions having been checked a priori), and the vehicle will

153

have already committed to the global minimum direction during the first calculation

epoch.

9.1.2 Timing and Accuracy.

For the 1000 simulation runs, the average loop time, including optimization cal-

culation, communication, UKF calculations, and all delays was 0.82 seconds, with

a standard deviation of 0.022 seconds. Figure 51 highlights the advantage of using

variable calculation timing. If a fixed timing update were selected based on this data,

Figure 51. Average Loop Times for Simulation Runs

it would be about Δtcalc = 1.3 seconds, and no trajectory updates would have been

available until that time for each epoch. Additional complexity in the creation of

the dealer function was required to be able to accept updates as soon as they were

available, but 59% more path updates were received, greatly increasing the system’s

flexibility and ability to deal with uncertainty.

The system’s final error upon reaching the approach point is shown in Figure 52.

As expected, the performance in the vertical component was better than required,

154

Figure 52. Final Target Estimate Error for Simulation Runs

due to the number of highly orthogonal measurements for the entire flight (variance

of the series of final vertical error estimates from the 1000 simulation runs was 0.0026-

m2). For this geometry, the certainty in the horizontal target estimate is the critical

parameter that the path planner must meet. The average of the final horizontal co-

variance estimates from the simulation runs was 0.017-m2, which closely matched the

actual variance of the final horizontal error of 0.016-m2. The estimated covariance re-

quirement was to be below the limit of 0.02-m2, but was slightly better than expected

due to the fact that typically 2-3 measurements come in during each planning cycle.

If the first measurement is the one that put the variance under the limit, the effect of

all three is still recorded, as they are processed in batch. This certainty is acceptable

for landing considering the size and shape of the quadrotor’s arresting hook, and the

estimate will be improved with the additional measurements that will come during

the flare segment until the camera exits the true FOV limits. More importantly, how-

ever, the result validates the algorithm’s effectiveness at accomplishing the primary

purpose of the research—to create a path in real time that can achieve a required

amount of target position certainty in a stochastic environment.

155

The time series results of the simulation runs can be seen in Figure 53 and Fig-

ure 54. The extended times for some runs were due to a more distant target location

Figure 53. Target Position Estimation Error During 1000 Simulation Runs

Figure 54. Target Covariance During 1000 Simulation Runs

(the longest run was 38-m). These results show the stability and predictability of the

UFK algorithm, and the ability to achieve the final required covariance estimate.

156

9.2 Flight Test Results

The flight test approach for the system included a build-up series of flights initially

working with the stability of the system, followed by the path tracking capability.

Most of these flights were accomplished in the small (4-m square) flight facility in

the AFIT ANT Center, shown in Figure 55. For tracking, the dealer program was

Figure 55. Flight Control Work Accomplished in the ANT Center (Photo: New York
Times)

incorporated to command simple flight profiles, eventually adding the path planning

system. Further flights were accomplished to test flying qualities with the arresting

hook, which were found to be unacceptable due to a large vibration mode induced by

the flexible hook. The hook was dampened with a series of support lines, and scaled

down profiles were flown to test the flare segment profile and to test engagement of

an actual wire.

Full-size profile flights were first accomplished with a simulated wire in the �AVIARI,

followed by the final two end-to-end tests conducted with a real wire to demonstrate

the complete system from takeoff to perching on the power line. The only human in-

put to the system for the full profile flights was consent to turn the motors on and off.

157

The runs were initialized in the same manner as the Monte Carlo-style simulation,

with the exceptions noted in Table 3.

Table 3. Flight Test Parameters and Results

Parameters Run 1 Run 2

x0 (m)
[
−8 3

]T [
−8 3

]T
xt (m)

[
8.54 4.17

]T [
8.54 4.17

]T
x̂t0 (m)

[
4 3

]T [
15 5

]T
Results
Avg Loop Time 0.83 s 0.85 s
Min Loop Time 0.77 s 0.77 s
Max Loop Time 0.92 s 0.97 s
RTOC Segment 31.53 s 32.33 s

xerror(tpercℎ) (m)
[

0.0117 0.0144
]T [

0.0247 0.0298
]T

P(tapp) (m)2

[
0.0195 0.0025
0.0025 0.0024

] [
0.0185 −0.0024
−0.0024 0.0024

]

9.2.1 Flight Test Run #1.

It should be noted that Flight Test Run #1 and Run #2 were the actual first

and second flights with an installed wire. The complete flight path for Run #1 can

be seen in Figure 56, with the flight progressing from the negative x-axis side of the

facility with the origin placed near the center of the room. Tracking was acceptable,

with the exception of the space at the approach point, which can be more readily

seen in Figure 57.

The cause of the deviation is the slow integrators on position error, and the fact

that the system was tracking the optimal path with feedback vice using feed-forward

of the optimal control. The run starts at t = 30 seconds, when the first measurement

is accepted and the RTOC system is engaged. Path error in the x-direction increases

as the command “leaves” the hovering vehicle and it begins to catch up. While the

158

Figure 56. Flight Path, Flight Test Run #1

vehicle travels across the room, the integrator adds up the difference to remove the

steady-state error, only to overshoot as the vehicle nears the approach point and

the horizontal speed command abruptly stops. For future systems that have more

of an ability to flight test the control system, the speed of the integrators should

be increased to lessen the amount of time that steady-state errors are present within

reason for strong stability. In addition, to anticipate the “corners” in the flight profile,

a feed-forward element should be added to the feedback error loop guided by the

actual optimal control time history. This will change the control prior to “corners”

for better (perfect, in theory) tracking of the path. As is, the system is guided by the

error between the current and optimal paths, which will always result in late control

inputs, as nothing happens until the paths have already begun to diverge.

The shell profile for the flight is most easily seen in the z-direction (vertical). The

aircraft takes off and is directed to hold at 1-m to check stability, taking a moment

to integrate the vertical steady-state control requirement as it begins to leave ground

effect. After a 5 second hold, the aircraft is directed to a hover at the start run point.

159

Figure 57. Commanded vs Actual Flight Path, Flight Test Run #1

The RTOC portion of the run is from t = 30 seconds until t = 61.5 seconds, at which

point the vehicle is held level and slowly moves forward to the wire. There is no actual

sensor on the vehicle to detect the wire—the vehicle stops based on the last known

relative position, as the wire is no longer in the FOV. These are obvious difficulties

that should be remedied in a full system. Tracking is good, and the separation of

the vertical paths is seen at the point where the wire is actually in contact with the

hook, denoted by the vertical red line in each of the plots. At this point, the vertical

command continues to descend, but the vehicle stops as soon as the slack is taken out

of the wire. The engines are turned off at 115 seconds, as noted by the quick vertical

drop as the wire stretches slightly with the remaining vehicle weight.

Heading () error is minimal, once stabilized, with some difficulty during the

slower flare portion of the path. The horizontal position command during the flare

160

portion is not linear, but a continually slowing path as the wire is approached. With

the heading controlled by the torque balance of the engines, the constant small

changes in pitch angle required to track the path and its constant speed changes

resulted in some difficulty maintaining heading, and y-axis error, which occurred

right at the wire and may have also been induced somewhat by propwash from the

nearby wall.

9.2.1.1 RTOC Performance.

The RTOC system performed exactly as designed. The actions of the path plan-

ning system as it converges to the optimal path are difficult to characterize without a

string of all of the system updates, but Figure 58 summarizes this with a progression

of instantaneous solutions in the vertical plane at separate sample times. The arrows

from the vehicle denote the actual bearing measurements received by the system, and

the directions give a sense of the magnitude of the measurement errors (they should

point through the true target). Both the estimated and actual target location can

be seen. The covariance ellipsoid shows a 95% likely confidence ring, and the error

in the initial seconds exceeds this slightly as the estimate settles with the first few

measurements. The diamonds denote target estimate histories, showing a trend to-

ward the true target with an unsurprising difficulty in resolving range. The range

ambiguity can also be seen in the orientation of the covariance ellipse, which has the

greatest uncertainty in the direction of the LOS from the vehicle. The reason for

the “hook” at the end of the paths is clearly seen, as the path planner moves the

vehicle to a position orthogonal to the greatest axis of uncertainty remaining. The

last measurements in the profile are critical, both in terms of the value of close range

measurement and the value of measurements from that direction.

161

(a) t0 = 0.9 s (b) t0 = 15.5 s

(c) t0 = 25.9 s (d) Deterministic vs Stochastic Path

Figure 58. Flight Test Run #1 Snapshots, and Comparison to Full-Knowledge Path

The final panel of Figure 58 shows the comparison of the actual path that was

flown by the vehicle with the path that would have been commanded had the target

position estimate always been perfectly accurate. This demonstrates the true power of

stochastic real-time optimal control. Even with the initial error in the target position,

and with the errors in each measurement, the actual path that the vehicle flew was

very close to the perfect-information solution.

9.2.2 Flight Test Run #2.

As previously mentioned, the initial target estimate for the second test flight profile

was set unrealistically high, making the “low road” the global minimum due to the

162

6 6 ...
5 •

4
E ~ • True Tgt E
';:;.> ... Est Tgt N

._. App Point 2
• Old Est Tgt

Meas.

0 -95%Cert. 0.
-10 -5 0 5 10 15 -10 -5 0 5 10 15

X (Ill) x (m)

6 6

• • 5

4
~4

E E
N N3

2
I ,

2 : - Full-knowledge Optimal Path
I Actual Path

I ' 0
-I 0 -5 0 5 10 15 -5 0 5 10

x(m) x (m)

insufficient observability of the horizontal axis while near the maximum allowable

altitude. The flight path is shown in Figure 59. The comparison of commanded vs.

Figure 59. Flight Path, Flight Test Run #2

actual position can be seen in Figure 60. As can be seen, Run #1 and Run #2

exhibited many of the same characteristics.

The RTOC controller performance is shown in the snapshot progression of Fig-

ure 61. Note the position of the target estimate in Figure 61a in relation to the

maximum allowed altitude. This is what forced the “low road” to be the optimal

path with the initial information. Even though the estimate had moved down signifi-

cantly by Figure 61b, once the vehicle has committed to a certain direction, switching

to the local minimum on the other side becomes too costly. In terms of mission ac-

complishment, the only loss from the perfect-information solution in this contingency

case is a small increase in flight time, 0.8 seconds over that of Run #1.

The final panel, Figure 61d, shows the path of the flare mode, which proceeds

level from the approach point to the perch point before commanding a descent to

engage the hook, as shown in Figure 62.

163

Figure 60. Commanded vs Actual Flight Path, Flight Test Run #2

164

(a) t0 = 1.9 s (b) t0 = 14.5 s

(c) t0 = 26.5 s (d) Flare Mode

Figure 61. Snapshot Progression of Flight Test Run #2

Figure 62. Quadrotor Just Prior to Hook Engagement

165

6• , ~;
6 ,, ,,

51 ,/
/

,,,'' ...
4r , , 4

~ {:::
• True Tgt E 53~ ·~:·.~::~·-r:-.-:;- --------- ~

N • EstTgt N

2f- • AppPoint 2f-

I
• Old Est Tgt

ol
Meas.

- -95%CeJi. 0·
- 10 0 10 20 -1 0 0 10 20

X (Ill) x (m)

6>
• ... • • •

4 ..-- 4.5
§ g
N N 4

21-
3.5

3
0·
-1 0 0 10 20 6. 5 7.5 8 8.5 9

x (m) x (m)

X. Conclusions and Future Work

T his research successfully developed a method to simultaneously solve the op-

timal control and the optimal estimation problems. A recursive algorithm

was designed to implement the method in real-time for disturbance rejection and

treatment of uncertainties in the model and measurements. The solution is compre-

hensive, and was verified in flight test—autonomously landing a quadrotor helicopter

on a wire as an enabler for the future capability of energy harvesting. This method

may be applied to any system with a bearing-only sensor that requires relative posi-

tion information about a source in order to perform its primary mission.

10.1 Conclusions

The most obvious conclusion from this research is that a vehicle may be guided

to—and landed upon—a wire using stochastic, delayed, bearing-only measurements.

Future systems that may benefit from energy harvesting are sensor limited, and most

systems of such size have only a monocular camera. Additional sensors may be

desirable for landing on power lines, but are not required. Furthermore, this study

provides support that the Unscented Kalman Filter is a suitable estimation tool for

such applications, and that real-time optimal control may be applied to direct a path

that will acquire the level of target position certainty necessary to commit to a landing

maneuver.

In the realm of trajectory optimization, several conclusions can be drawn from

these efforts. The first is that there is a fundamentally different way to approach

the localization and dual control problems that is more suitable and effective than

traditional methods. The ubiquitous technique of optimizing a cost functional com-

166

prised of a scalar approximation of a multi-dimensional certainty metric has several

disadvantages that are overcome with the methods developed in this work.

In the new approach, a user retains the directional information that was formerly

approximated by a scalar, dispensing with difficulties of randomly odd-shaped uncer-

tainty ellipsoids and other effects of information compression. This allows shaping of

the uncertainty to match the physical requirements of the system, such as the actual

shape of an arresting hook on a sUAS. Furthermore, previous methods minimized

current uncertainty as much as possible, vice to a specific level. This research has

now provided a way to prescribe the final uncertainty, which is the true requirement

for mission accomplishment. Without this ability, a vehicle will maneuver as much

as it can until an arbitrary time, or perhaps will balance the amount of maneuvering

based on some arbitrary weight on the current certainty. Either way, it will not know

whether it will achieve the necessary amount of target information, or whether it

has wasted effort collecting too much information until the vehicle reaches the point

where the information is required, when it is too late.

Early efforts provided a shooting solution which would allow a user to prescribe

a final covariance. Trial solutions would be checked for the expected final covari-

ance, iterating the weighed cost functional until the path produced yielded the right

size and shape final certainty. This method was eclipsed by an elegant, single-shot

solution that simultaneously handles the optimal control desires without weighting

adjustments while meeting the physical information needs of the system. The single-

shot solution was made possible by augmentation of the system state vector with

states that contain an estimation in the polynomial space of the knowledge gained

by the constellation of discrete measurements normally expressed by the Fisher In-

formation Matrix. Dynamics were developed for these information states, and with

care to avoid singularities, boundary conditions were enforced to ensure that by the

167

time the system arrives at the desired final state, it will have collected the appro-

priate measurements, from the necessary angles, to finish the flight with the desired

certainty in the target location estimate.

A further conclusion drawn is that the requirement of fixing a final time in the dual

control problem can now be changed to a free final time. This was previously done

either explicitly, or implicitly, through methods such as fixing a final distance with a

given closure, fixing the total number of measurements with a given update rate, or

by fixing an allowable travel proportion of the estimated distance to the target (with

a constant speed). A fixed final time is a significant limitation for application to real

systems beyond simulation. In reality, the time that will elapse during maneuvers not

yet solved for is unknown, as is the number of measurements that will be required to

meet the final mission requirements. The proportion of distance relative to the initial

unknown distance is obviously also unknown. Choosing any of these, or more directly

just choosing the fixed final time ends up being a primary driver of the characteristics

of the solution trajectory. A solution that is truly optimal must be able to vary the

problem geometry to get the required number of measurements from the necessary

angles to accomplish the mission without limiting the set of possible solutions to those

paths which end at a particular final time.

Several conclusions can also be drawn in the area of RTOC. The successful appli-

cation of a recursive algorithm with pseudospectral methods as the engine working

sequentially with a UFK receiving measurements from a bearing-only source is of

great benefit. It validated the theory of disturbance rejection and the ability to use

the speed of the pseudospectral methods to produce solutions that can guide in real-

time. Applying the theory to real hardware produced several tools that were not

required in previous PSM RTOC simulations, such as an intermediate function to ad-

168

dress the asynchronous timing loops between a control system and an unpredictable

optimal solver.

This work clearly demonstrated that allowing the calculation time of the optimal

solver to vary has great value, increasing the flexibility and responsiveness of the

system by increasing the rate of available optimal solutions. The structure necessary

to address the potential discontinuities that result from achieving this benefit was also

designed and implemented, using a blending solution to ensure smooth and accurate

control with the most current data from both the path planner and the estimation

filter.

From a systematic perspective of basic RTOC implementation, this research showed

that the trend in the RTOC community of equating closed-loop feedback control with

a fast, recursive optimal solution is insufficient. This conclusion has developed over

time as a byproduct of most of the RTOC applications being limited to simulation.

Non-zero mean and time-correlated biases will cause steady-state errors that will be

unaccounted for by a purely feed-forward solution. Though such a system will reach

the final condition, the optimality of the path it takes is more of a mathematical

construct than an operational reality. A more comprehensive and effective method

must account for the anticipated future effects of disturbances and model inaccura-

cies. This can be done through classical integration of the error between the expected

and actual paths, and through feedback of disturbance estimates into the dynamical

model for each optimal solver epoch. The ideal RTOC structure is to accomplish

both, updating the model with estimates, and applying a total control solution that

is a combination of the open-loop optimal solution and an integrated error feedback

component.

Finally, this research provides a planning tool that may be used to develop heuris-

tics for a suboptimal approach to landing on a power line that may be sufficient for

169

systems with significant computational limitations, as may be the case for many sUAS

platforms. Re-creating the single-shot solution with the particular system dynamics

and limitations would provide the characteristics common to optimal solution paths.

10.2 Future Work

There are many directions of research that can be pursued from this point. The

likely fielded implementation of a full RTOC path planner is for submarine guidance.

To modify the problem, the axes must first be simply rotated into the horizontal.

A study should be made to determine whether adding a third dimension would be

beneficial or not, based on the ratio of relative pickup ranges to vertical maneuvering

ability. Previous research has decided that it is not necessary, but if it is added, the

information states will need to be increased to 6 elements, and if the final covari-

ance is still the required parameter of choice, a differentiable method for solving or

approximating the 3-dimensional FIM inverse will be required.

To incorporate the likelihood of a moving target, the estimation filter must be

expanded to include states for target velocity and target heading. The RTOC prob-

lem can accept these as constants, and plan the path based on the assumption that

the target will not maneuver. If future maneuvers do occur, the path planner will

recursively solve the problem with the best information it has at the time. There are

open questions along this direction, such as observability requirements (much like the

power line problem, with both range and speed unknown, you can receive the same

bearing measurements for infinite paths unless the observer maneuvers). In addition,

adding a second measurement source for a towed array, and a velocity input from

Doppler measurements would make the solution fieldable.

170

For the sUAS problem, the optical requirements remain unaddressed. An op-

tical line detection algorithm should be implemented, either new, or with existing

technologies. This could also be expanded to include stadiametric ranging, since the

approximate height-above-ground may be known for the power line or the utility

poles. Identification of utility poles in the image would also be of benefit. If the

problem can detect lateral motion in relation to the line, then lateral motion will im-

prove observability, and the 3-dimensional FIM should be incorporated as discussed.

To incorporate the ability to land upon a ledge or other perch, only the optical re-

quirements for determining an appropriate landing site change (and the flare segment,

obviously). The approach segment method used in this work can be used interchange-

ably, with the safety stand-off distance used herein to avoid hitting a window or other

structure by commanding no flight past a safe limit until the range to the ledge is

sufficiently certain. The size of the safety limit can shrink in accordance with the

current certainty level for that epoch.

The flight test can also be expanded for realism. Adapting the system to a fixed-

wing asset and accomplishing the flight test outdoors on a full-sized power line would

obviously be ideal, and would drive solutions for more significant disturbance rejec-

tion, especially in the landing phase. If the same quadrotor is used, the hook should

be redesigned with an “open mouth” that will allow it some vertical error, and a

way to detect line engagement, so that it may “drive through” the line estimate, and

not need to know it so precisely. The flight control system must also be improved,

using feed-forward optimal control inputs with feedback of trajectory error. Lastly,

the power-to-weight problem of the device used to recharge the battery inductively

needs to be addressed, as current solutions are too heavy for very light platforms.

171

10.3 Summary

In summary, this work provided a method that can be applied to a system with

any given dynamics, and with any cost function, that will allow it to be guided in

relation to an estimated target location to accomplish a potentially unrelated primary

control mission. Deviations from the optimal path will be made to collect bearing-

only measurements in sufficient quantity and with a sufficient angular orthogonality

to identify the target location, without wasting maneuver effort beyond the minimum

necessary to provide the level of certainty in the target location estimate that is re-

quired for mission accomplishment. This method can be modified to apply it towards

guidance of submarines using passive sonar, HARM missiles, or other bearing-only

systems. For the future capability of energy harvesting, the system can guide a sUAS

from a point with an initial bearing measurement to a power line to an approach

point from which a flare maneuver can be commenced for landing. With the current

capability to autonomously guide a system to a location where a power line can be

found, and the current research in the area of the actual flare maneuver, this research

makes full-scale landing on a power line a near-term technology.

Figure 63. Engine Shutdown

172

Appendix A. Quadrotor Flight Control Model

T he simulator developed for the quadrotor helicopter is preserved in the Simulink

diagrams of this appendix. Direction cosine matrices, equations of motion,

and some other features that are either clear by context or covered in the main body

of the dissertation are omitted.

A.1 Simulink Model

The main flow of the simulator can be seen in the top-tier diagram of Figure 64.

A commanded path is generated either to judge performance and stability with step

functions and the like, or to input a commanded profile from the path planner to

test tracking performance. Testing of the hover mode was performed with the next

block (Figure 65) to ensure that the system would lock a current commanded position

when a button on the hand controller was pressed and released (initiation happens

on the “release frame” vice the “press frame” to avoid multiple actuations). Initial

conditions also must be compensated for in the hover block for use with the automated

flight mode. For the hand control mode, if no command is made, the aircraft should

not move from the place the engines are started (else the aircraft would jump to

the navigation frame origin). Initial conditions are therefore added as offsets to the

hand control commands. Since this happens “downstream” in the code, the additive

inverse is added during automated flight to cancel the effect out and ensure that the

aircraft flies to the actual navigation frame input. The automated commands for the

aircraft are derived in real-time to ensure the shell always starts from the vehicle’s

true initial position.

The zero-order-hold blocks in Figure 64 discretize the model. Commands are dis-

crete in order to use the same transfer functions as are required in the true controller,

173

F
ig

u
re

6
4
.

Q
u
a
d

ro
to

r
S

im
u

la
to

r
T

o
p

-T
ie

r

174

Figure 65. Logic to Initiate Hover Mode, Lock in Current Position, and Compensate
for Initial Conditions

but equations of motion are all treated continuously. The first DCM transforms the

commanded coordinates from the hand controller axes to the navigation frame, based

on the position the observer pilot expects to stand in relation to the room. Com-

manded position is then compared to expected, and the error signal is saturated, with

different levels in each axis, to control the maximum velocity as discussed in Chap-

ter VIII. The resultant error signal is then transformed into the body frame and sent

to the ground station controller, which generates control signals for the inner loop

controller on board the aircraft, as shown in Figure 66. Ground station control laws

for each axis are shown in Figures 67-69. Integration, sneakback, and anti-chatter

logic are shown for the x-direction in Figures 70-72. The logic is the same for the

y-axis, and is similar in the z-axis, which includes integration and reset logic, but does

not require sneakback or anti-chatter. The control signal from the ground station is

sent to the servo-sensor board on the aircraft, which is modeled in Figure 73. This is

the inner stabilization loop, and it contains an input to simulate IMU noise, as well

as the discrete lag filters used to estimate angular accelerations based on the angular

rate commands. The commands for each axis are combined in a mixer to determine

175

the actual motor commands. The mixer is easier to understand in equation form:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Motor0cmd

Motor1cmd

Motor2cmd

Motor3cmd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 1

−1 1 1 1

−1 −1 −1 1

1 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ṗcmd

q̇cmd

ṙcmd

tℎrottlecmd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(169)

where the motors are numbered clockwise, starting with zero in the front left corner

when facing in the positive x direction.

The forces and moments are determined in Figure 74, using an assumed (not

measured) first-order model for motor spin-up delay with the engine thrust and torque

models:

Torque (N−m) = 4.16029e−5(PWM)2 − 0.09592(PWM) + 55.49559 (170)

Tℎrust (N) = 6.78e−6(PWM)2 − 0.009868(PWM) + 2.90352 (171)

Each motor acts 0.15-m from the centerline for purposes of calculating the actual

moments. With the forces and moments, the position and orientation of the aircraft

is solved for using Equations 156-163 in Chapter VIII. Some delay can be added

to the position and orientation to provide the discrete Vicon measurements, but in

practice this was found to be negligible. Finally, the measurements are rotated into

the navigation frame to complete the top-tier loop. Gain values, constants, and other

specific details can be found in the initialization file in Table 4.

176

F
ig

u
re

6
6
.

G
ro

u
n

d
S

ta
ti

o
n

a
n

d
P

IC
C

o
n
tr

o
ll

e
rs

177

F
ig

u
re

6
7
.

H
o
ri

z
o
n
ta

l
C

o
n
tr

o
l

L
a
w

s

178

Figure 68. Vertical Control Law

Figure 69. Heading Control Law

179

Figure 70. Integrator Management Logic—Integrate, Reset, Anti-windup, Anti-
Chatter (Also Used for y-Axis)

Figure 71. Subsystem for Switch Logic—Integrate if within Limits, Else Pull Integrator
Back

Figure 72. “Sneakback” and Chatter Avoidance Subsystem

180

F
ig

u
re

7
3
.

In
n
e
r

C
o
n
tr

o
l

L
o
o
p

(S
e
rv

o
S

e
n

so
r

B
o
a
rd

M
o
d

e
l

w
it

h
S

im
u

la
te

d
N

o
is

e
In

p
u

t)

181

<0
f,
f,

= "'
:;;

~

" ·-·-

-;; ..,
!.l 8

5
"5
"' (L ,
.ll
:>

(/)

X

~

~
0

"
<0
•'·
.~

= -:;;
·-.. : ~
' ~

-;;
;,;:

._
.8 ,_,
n
(L

0 ..,
()

(I)

!::
·:.:.·

2
£

·~

2
"
·1.'
:;::; e
f;

c :t::
0 •':>
II If

0

I

I

:-~
0

2

•• "' ·=>
L
"0
co
<(

F
ig

u
re

7
4
.

F
o
rc

e
s

a
n

d
M

o
m

e
n
ts

:
M

o
to

r
D

y
n

a
m

ic
s,

T
h

ru
st

,
a
n

d
T

o
rq

u
e

M
o
d

e
ls

182

Table 4. Simulator Initialization and Constants

Parameter Value1 Comments
g 9.81 m/s2

m 1.8 kg Mass, Batteries Installed
dt 0.01 s Ground Station Time Step
Vicon delay 0.1 s Conservative Delay Estimate

Ixx 0.0203 kg-m2 Mass Model
Iyy 0.0205 kg-m2

Izz 0.04 kg-m2

k psi p 4000 Angle Feedback
k theta p 6
k phi p 6

k Px p 4000 Proportional Error Feedback
k Py p 4000
k Pz p 150

k Vx p 1750 Velocity Damping
k Vy p 1750
k Vz p 100

kp p 12 Inner Loop (SSB) Angle Rate Feedback
kq p 12
kr p 12

kp d 180 SSB Angular Acceleration Feedback
kq d 180
kr d 180

max x vel 1 m/s Speed Limits
max y vel 1 m/s
max z vel up 1 m/s
max z vel down 1 m/s

nominal throt 1680
Tmotor 0.03 s Lag Constant (Estimated)
IMU GYRO SCALE 0.0091575 Least Significant Bit to Fixed Point
b mot 46 Input Matrix for Angular Accel Estimate
phi mot 210 Transition Matrix for Angular Accel Est.

Continued on next page. . .

183

(continued)

Parameter Value Comments

recovery time 10 s Controls to Tune Integrator Speed
recovery time z 7.5 s
recovery time yaw 10 s

Integrator Saturation and Gain Values are Solved for Based on the
Recovery Time to Produce the Desired Maximum Velocities

kx int = kPx p/recovery time/50 Adjusted for 50-Hz Controller
ky int = kPy p/recovery time/50
kz int = kPz p/recovery time z/50
kpsi int = k psi p/recovery time yaw/50

x pos sat = 1.5 * max x vel * kVx p / kPx p
y pos sat = 1.5 * max y vel * kVy p / kPy p
z pos sat up = max z vel up * kVz p / kPz p
z pos sat dn = max z vel dn * kVz p / kPz p

x int sat = x pos sat * kPx p / kx int
y int sat = y pos sat * kPy p / ky int
z int sat up = z pos sat up * kPz p / kz int
z int sat dn = z pos sat dn * kPz p / kz int
psi int sat = �/2 * k psi p / kpsi int

sneak back x = 0.5 * x int sat / 50 / recovery time
sneak back y = 0.5 * y int sat / 50 / recovery time
sneak back z = 0.5 * z int sat dn / 50 / recovery time

1Gains will convert to Fixed Point Units (balance may look wrong)

184

Appendix B. Selected MatlabⓇ Code

F or length considerations, the complete code required for the system cannot

be presented here, but a few items are which may be of particular interest.

The main path planning loop is shown to aid in understanding of the flow, and

the initialization section walks a user through the lengthy connection process to get

the path planning computer networked and synchronized with the ground station

computer, Vicon, and the aircraft. This may be useful to those who would like to

apply any similar external control system to the ground station for automated flight

control in the ANT Center or the �AVIARI, regardless of the specific vehicle. The

functions required to interface with GPOPS are also presented, as the format may

be of particular use to future researchers that may require the software for other

applications. All of the further path planner subroutines are omitted, as they are

relatively application specific. The current version of the quadrotor flight code is also

not presented, as it is a work in progress and will shortly be obsolete.

B.1 Main Path Planner Loop

The main path planner loop guides the processes of calculation and communication

between the flight control software and the optimal path planning software. Future

control time histories are passed to the dealer function, which parses the history

and feeds the correct heading and position commands to the flight controller. In

return, the dealer function provides the current position of the vehicle, as well a list

of recent angle measurements from the vehicle to the wire. The path planner then

iteratively calls the estimation filter and the optimal control solver to update the

target estimate and the optimal path, handling projection for initial conditions and

expected covariance, path blending, and data recording.

185

The optimal trajectory provided by the solver is spliced into the complete control

history “shell,” which also includes segments for the takeoff sequence, the flare mode,

and a backup landing mode in case the wire is not engaged with the current plan

and a further plan is never provided. Scaling of the path (and of the measurements)

is provided by subroutines so that the vehicle may operate in both the ANT Center

and the larger �AVIARI using the same planning algorithm.

Communication between the path planner and the dealer function is accomplished

by way of a TCP connection that relies on a TCP/UDP/IP toolbox created by Peter

Rydesater and can be downloaded from the MatlabⓇ Central File Exchange at:

http://www.mathworks.com/matlabcenterl/fileexchange/345. The toolbox is built

with .mex files, and a .dll file must first be created with any C compiler. The com-

munication tools provide the ability to pass the data using the “blocking” techniques

discussed in Section 7.1.3.1, allowing variable calculation timing. Breaking the mes-

sage into TCP packets and reshaping them in the dealer function is performed by a

subroutine written by Mr. Mark Smearcheck.

Main Path Planner Loop Code.

0001 %% %%

0002 %% Main Quadrotor Shell %%

0003 %% %%

0004 %This is the main program for flying the quadrotor, and it is the main loop

0005 %for timing and communication between the Vicon/Groundstation, the optimal

0006 %path planner, and the UKF. It can also run in simulation mode without

0007 %input from the Vicon and the vehicle. Running the program will walk a

0008 %user through the pre-flight initialization and connection process.

0009 %

0010 %Written by LtCol Steven Ross, AFIT, 2011.

0011

0012

0013 clear all;

0014 home

0015 global WHERE TO RUN WHAT TO RUN FASTMODE CONST

0016 figure cascade = 1; %Compare multiple figure sets

0017

0018 %% %%%%%%%%%%%%%%%%%%%%%%

0019 %% Flight Mode options %%

0020 %% %%%%%%%%%%%%%%%%%%%%%%

0021 sim = 0; %1=simulation mode, 0=flight mode

0022 display on = 0; %1=display on in real-time (disrupts timing)

186

0023 ANT = 0; %1=scale (both directions) 1=Fly in ANT center, 0=AFRL

0024

0025

0026 %% %%%%%%%%%%%%%%%%%%%

0027 %% Configure Solver %%

0028 %% %%%%%%%%%%%%%%%%%%%

0029 limits.nodes = 30; %Global only, not used for hp local w/ GPOPS 3.3

0030 WHERE TO RUN = 1; %Location of GPOPS: 1=C drive, 2=I drive, 3=L drive

0031 WHAT TO RUN = 3; %1=GPOPS 2.4 2=GPOPS 3.2 3=GPOPS 3.3

0032 FASTMODE = 1; %1=Modified GPOPS, else=normal GPOPS

0033

0034 % Subroutine to set path and initialize solver

0035 configure path for gpops(WHERE TO RUN, WHAT TO RUN)

0036 current solution = []; %init

0037

0038

0039 %% %%%

0040 %% Setup Options to define flight shell %%

0041 %% Coordinates are: (vicon)[x,y,z(m),psi(rad)] %%

0042 %% %%%

0043 shell.dt path planner = 0.2; %s Time per line in shell

0044 shell.flight time = 180; %s Makes 901 lines to dealer

0045

0046 % Start a/c around [-8.84 0 0 0] (8.84m is 29 ft, position not critical)

0047 shell.flight time to 1m = 5; %s

0048 shell.hold time at 1m = 5; %s

0049 shell.start run point = [-8 0 3 0]; %m

0050 shell.flight time to start run point = 10; %s

0051 shell.hold time at start run point = 10; %s

0052

0053 %post run (abort plan if no hook engagement):

0054 shell.time to descend to 1m = 10; %s

0055 shell.hold time before land at 1m = 5; %s

0056 shell.flight time 1m to land = 10; %s

0057 shell.time to hold land position = 5; %s

0058 %Total slots-landing mode slots = the time slot to transition to land mode

0059 shell.landing slot=(shell.flight time - shell.time to descend to 1m ...

0060 -shell.hold time before land at 1m - shell.flight time 1m to land ...

0061 -shell.time to hold land position)/shell.dt path planner;

0062 last update line = shell.landing slot; %init. Changes during land mode

0063

0064 %hook engagement plan:

0065 shell.hold at approach point = 5; %seconds to settle/correct height

0066 shell.perch speed = 1/12; %m/s

0067 shell.correction time = 5; %blend in vertical tgt est. changes over 5 sec

0068 shell.stop update time = 5; %s--freeze the tgt updates

0069

0070

0071 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0072 %% Setup first trajectory planner run %%

0073 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0074 dt gpops = 0.9; %Est. inclusive loop time--planner calc, delay, filter...

0075 P=[80 0; 0 80]; %mˆ2 CURRENT uncertainty in target pos (not IC), Cartesian

0076 IC.P0 = P; %Uncertainty expected at next initial planning point (Cartesian)

0077

0078 CONST.Pxx f = 0.02; %Final Covariance Element to be met

0079 CONST.Pzz f = 0.02; %Final Covariance Element to be met

0080

0081 IC.t0=shell.flight time to 1m+shell.hold time at 1m+ ...

0082 shell.flight time to start run point+shell.hold time at start run point;

0083 IC.x0 = shell.start run point(1); %m vicon frame, next planning point

0084 IC.y0 = shell.start run point(2); %m vicon frame, next planning point

0085 IC.z0 = shell.start run point(3); %m vicon frame, next planning point

0086 IC.psi0 = 0;

0087 IC.xdot0 = 0; %m/s Exp obs horiz velocity at next planning point

0088 IC.zdot0 = 0; %m/s Exp obs vert velocity at next planning point

187

0089 CONST.x hat tgt = 15; %m Inertial Coords, target initial guess

0090 CONST.z hat tgt = 5; %m Inertial Coords, target initial guess

0091

0092

0093 %% %%

0094 %% Define physical limitations--Room, Quadrotor, Bearing Measurement Sensor

0095 %% %%

0096 limits.perch offset x = 0; %m Desired offset from wire at perch point

0097 limits.perch offset z = -0.4; %m

0098 limits.x approach offset =-2; %m Desired offset from wire at app. point

0099 limits.z approach offset = -0.4; %m

0100 limits.slush = 0; %miss distance at app point (smoother, slower)

0101 limits.min alt = 0.8; %Hard Deck for "run" portion, vicon z (m)

0102 limits.max alt = 5.5; %Flight ceiling, vicon z (m)

0103 limits.min x = -9; %Allowable envelope vicon x (m)

0104 limits.max x = 9; %(cameras are intermittent near the wall)

0105 limits.beta min = -(30)*pi/180; %camera lower limit (rad)

0106 limits.beta max = (40)*pi/180; %camera upper limit (rad)

0107 limits.xdot max = 0.5; %m/s Horizontal velocity limit

0108 limits.zdot max = 0.5; %m/s Vertical velocity limit

0109 limits.xddot max= 0.5; %m/sˆ2 Horizontal acceleration limit

0110 limits.zddot max= 0.5; %m/sˆ2 Vertical acceleration limit

0111

0112 % Truth data for plots, measurement generation

0113 CONST.x tgt = 8.555; %m

0114 CONST.z tgt = 4.02; %m;

0115 CONST.dt meas = 0.33; %sec. Expected time step of available measurements

0116 CONST.R = .005; %radˆ2 (std dev is a little over 4 deg)

0117 noise=sqrt(CONST.R)*randn(shell.flight time/CONST.dt meas,1); %meas noise

0118 total measurements = 0; % init

0119

0120

0121 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0122 %% Setup Unscented Kalman Filter %%

0123 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0124 CONST.NUKFSTATES = 2;

0125 alpha = 1e-3; % Sigma point spread

0126 beta = 2; % Prior knowledge parameter (2 opt. for Gaussian)

0127 kappa = 0; % Secondary scaling parameter

0128 lambda = alphaˆ2*(CONST.NUKFSTATES + kappa) - CONST.NUKFSTATES;

0129 CONST.scale param = CONST.NUKFSTATES + lambda;

0130 CONST.W0m = lambda/CONST.scale param;

0131 CONST.W0c = CONST.W0m + (1 - alphaˆ2 + beta);

0132 CONST.Wukf = 1/2/CONST.scale param;

0133

0134

0135 %% %%

0136 %% Setup Path Blending of tail for new target estimates %%

0137 %% %%

0138 blend time = 5; %seconds for blending at the end of the path

0139 blend t =(0:shell.dt path planner:blend time)’; %time vec. for cos wave

0140 blend wave = .5-.5*cos(pi/blend time*blend t); %gives 0 to 1 cos vector

0141

0142

0143 %% %%%

0144 %% Setup End of Path--from approach point to perch point %%

0145 %% %%%

0146 avg speed land mode = 2; %in/s

0147 approach time=(limits.perch offset x-limits.x approach offset)/ ...

0148 convlength(avg speed land mode,’in’,’m’);

0149 app lines=(0:1:ceil(approach time / shell.dt path planner))’;

0150 app wave1to0=.5+.5*cos(app lines/app lines(end)*pi); % 1 to 0 cos vector

0151 dx from perch=(.5+limits.perch offset x-limits.x approach offset) ...

0152 *app wave1to0; %correction splice

0153

0154

188

0155 %% %%

0156 %% Get User inputs--check IP/subnet settings, get initial start point %%

0157 %% %%

0158 if sim==1 %for the sim, just pick a hardcoded spot

0159 current pos=get current position sim(0,[]);

0160 if ANT==1

0161 current pos(2)=0;

0162 end

0163 sprintf(’%s’,’NOT ONLINE--SIMULATING CURRENT POS AND MEASUREMENT DATA’)

0164 else

0165 confirm1=’n’;

0166 while confirm1˜=’y’

0167 disp(’--’)

0168 disp(’--’)

0169 disp(’%%%’)

0170 disp(’%%%’)

0171 disp(’%%%’)

0172 disp(’--’)

0173 disp(’--’)

0174 disp(’%%%’)

0175 disp(’%%System initialized in real-world flight mode.%%’)

0176 disp(’%%%’)

0177

0178 disp(’--’)

0179 disp(’--’)

0180 if ANT==1

0181 disp(’System is in ANT Center mode--flight arena scaled’)

0182 disp(’Acknowledge with any key’)

0183 else

0184 disp(’System is in AFRL mode--no scaling’)

0185 disp(’Acknowledge with any key’)

0186 end

0187 pause

0188

0189 disp(’Apply Network Settings:’)

0190 disp(’IP: 192.168.10.91’)

0191 disp(’Subnet mask: 255.255.255.0’)

0192 confirm1=input(’Update settings. When correct, enter ’’y’’:’,’s’);

0193 end

0194 confirm2=’n’;

0195 while confirm2˜=’y’

0196 disp(’--’)

0197 disp(’--’)

0198 disp(’Confirm GS/UAV/vicon on, check frame rates, reasonable data’)

0199 disp(’Input current (start flight) position, Vicon Frame--’)

0200 initial x = input(’x(m)=’);

0201 initial y = input(’y(m)=’);

0202 initial z = input(’z(m)=’);

0203 initial psi deg = input(’psi(deg)=’);

0204 disp(’Confirm Initial Position (case sensitive)’)

0205 initial x

0206 initial y

0207 initial z

0208 initial psi deg

0209 confirm2=input(’If correct, enter ’’y’’, else enter ’’n’’:’,’s’);

0210 end

0211 %set initial position [line num x y z psi(rad)]

0212 current pos=[0 initial x initial y initial z initial psi deg*pi/180];

0213 end

0214

0215 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0216 %% Create first path shell for dealer %%

0217 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0218 if ANT==1

0219 current pos=scale pos from ANT(current pos);

0220 end

189

0221 %init:

0222 data for dealer all=zeros(shell.flight time/shell.dt path planner+1,4,200);

0223 path = build front shell for dealer(shell, current pos); %build path

0224

0225 %% Fill in a sample set of run data

0226 Start time = cputime;

0227 current solution = trajectory planner(IC,limits,current solution);

0228

0229 GPOPS init time = cputime-Start time %Display initial epoch planning time

0230 current solution.run time=GPOPS init time;

0231 path = build data for dealer(path, current solution, shell);

0232

0233 %% %%

0234 %% Set up file saving for post processing %%

0235 %% %%

0236 data for dealer all(:,:,1) = path; %save each path

0237 gpops = cell(200,1); %save GPOPS solutions

0238 meas save=cell(ceil(shell.flight time/CONST.dt meas),1); %save measurements

0239 loop time save = zeros(300,1); %init

0240 actual position = zeros(300,5); %init

0241 actual position(1,:) = current pos; %init

0242 current solution.IC = IC;

0243 x est = zeros(300,1); %init

0244 z est = zeros(300,1); %init

0245 x est(1) = CONST.x hat tgt;

0246 z est(1) = CONST.z hat tgt;

0247 gpops{1} = current solution;

0248 P save = cell(300,1); %init

0249 break loop = 0;

0250

0251

0252 %% %%%

0253 %% Plot initial path for visual error checking prior to takeoff %%

0254 %% %%%

0255 zero to 2pi = (0:2:360) * (pi/180); %rad (to display covariance circle)

0256 %2xN, pairs of points on unit circle:

0257 points on unit circle=[cos(zero to 2pi); sin(zero to 2pi)];

0258 old=plot init 96 ... %initialize main plot

0259 (current solution, IC,limits,current pos,points on unit circle);

0260 if ANT==1

0261 scaled path=scale path to ANT(path);

0262 plot dealer path(scaled path,shell,0,figure cascade)

0263 else

0264 plot dealer path(path,shell,0,figure cascade)

0265 end

0266 disp(’--’)

0267 disp(’--’)

0268 disp(’System Initialization Complete’)

0269 disp(’Confirm valid initial path, press any key’)

0270 pause

0271

0272

0273 %% %%%

0274 %% Connect to dealer function, hold until dealer accepts initial path %%

0275 %% %%%

0276 if sim˜=1

0277

0278 % IP Settings

0279 PORT CMDLST = 49993;

0280 PORT TRUTH = 49992;

0281

0282 % Info for cutting path packets

0283 NUM COMMANDS PER LIST = 901;

0284 NUM COMMANDS PER PACKET = 19;

0285 NUM VALUES PER COMMAND = 4;

0286

190

0287 % Create a TCP Server to send command lists

0288 sockconCMDLST = pnet(’tcpsocket’,PORT CMDLST);

0289 if sockconCMDLST == -1

0290 error(’Specified TCP port unavailable for command lists’);

0291 end

0292 disp(’Command List Server created’);

0293

0294 % Create a TCP Server to poll for truth and truth history

0295 sockconTRUTH = pnet(’tcpsocket’,PORT TRUTH);

0296 if sockconTRUTH == -1

0297 error(’Specified TCP port unavailable for truth messages’);

0298 end

0299 disp(’Truth Server created’);

0300

0301 disp(’Waiting for connections...Start the Dealer Now’)

0302

0303 % Blocks indefinitely until client connects for command lists

0304 conCMDLST = pnet(sockconCMDLST, ’tcplisten’);

0305 disp(’Command List Connection accepted’);

0306

0307 % Blocks indefinitely until client connects for truth and truth history

0308 conTRUTH = pnet(sockconTRUTH, ’tcplisten’);

0309 disp(’Truth Connection accepted’);

0310

0311 disp(’Connection to Dealer valid. Press "Connect" in ground station’)

0312

0313 % Wait for the ok before sending command lists

0314 okCMDLST = pnet(conCMDLST, ’read’, 1, ’swap’);

0315 if okCMDLST(1) ˜= ’1’

0316 disp(’Error receiving ok to start sending command lists ’);

0317 end

0318

0319 % Send path to dealer

0320 if ANT==1

0321 scaled path=scale path to ANT(path);

0322 SendPathList(conCMDLST,scaled path);

0323 else

0324 SendPathList(conCMDLST,path);

0325 end

0326 end

0327

0328 %% %%%

0329 %% Pre-run loop: takeoff to start run point %%

0330 %% %%%

0331 dist from start run point=10; %init (big)

0332 dist from approach point =10; %init (big)

0333 disp(’Waiting to start Pre-loop--’)

0334 disp(’Turn on Data Recorder, check valid IMU output, hit any key’)

0335 pause

0336 disp(’Start Ground station first, then Matlab:’)

0337 disp(’ 1) IP Flight’)

0338 disp(’ 2) Motors on’)

0339 disp(’ 3) Start IP Command RX’)

0340 disp(’ 4) Start MATLAB pre-loop (hit any key)’)

0341 pause

0342 sprintf(’Autopilot engaged, preloop--climbing to start run position’)

0343

0344 if sim==1 %For simulation, just enter the preloop for a few seconds

0345 run preloop time = 3; %seconds

0346 time start preloop = cputime;

0347 time integer = floor(run preloop time);

0348 else

0349 time integer = floor(IC.t0);

0350 end

0351

0352 %Run preloop until the start run time

191

0353 while current pos(1)*shell.dt path planner <= IC.t0-1

0354

0355 if sim==1 %for simulation, just exercises the preloop

0356 preloop time remaining=run preloop time-(cputime-time start preloop);

0357 if preloop time remaining <= time integer

0358 sprintf(’SIM MODE. Time remaining in pre-loop=%1.0f’,time integer)

0359 time integer=time integer-1;

0360 end

0361 if preloop time remaining <=0

0362 %set sim to 1 second prior to run, hovering at start run point

0363 current pos=[ceil((IC.t0)/shell.dt path planner) ...

0364 IC.x0 IC.y0 IC.z0 IC.psi0];

0365 end

0366 else %get current position from Dealer

0367 current pos = get current position(conTRUTH);

0368

0369 % AFRL vs ANT lab sign swap--temp fix (number 1/3)

0370 current pos(4)=-current pos(4);

0371

0372 if ANT==1 %scale if in ANT center

0373 current pos=scale pos from ANT(current pos);

0374 end

0375

0376 %display time remaining every integer

0377 preloop time remaining=floor(IC.t0-current pos(1) ...

0378 *shell.dt path planner);

0379 if preloop time remaining<time integer

0380 time integer=preloop time remaining;

0381 sprintf(’FLY MODE. Time to start run: %1.0f’,time integer)

0382 end

0383 end

0384 end

0385

0386

0387 %% %%%%%%%%%%%%%%%%%%%%%%

0388 %% Init Main Run loop %%

0389 %% %%%%%%%%%%%%%%%%%%%%%%

0390 loop ctr=2; %counter for knowing which slice to put data for dealer into

0391 sprintf(’Begin Main Run Loop’)

0392 slot last meas=ceil((IC.t0-CONST.dt meas)/shell.dt path planner);

0393 meas = []; %no initial measurements

0394 approach point=[CONST.x hat tgt+limits.x approach offset ...

0395 CONST.z hat tgt+limits.z approach offset];

0396 start loop time=cputime;

0397

0398 if sim==1 %sim mode: generate a fake list of time slots for measurements

0399 line meas sim= ...

0400 ceil(152:CONST.dt meas/shell.dt path planner:shell.landing slot);

0401 sim clock = cputime;

0402 display fudge = 0; %compensation factors (sim only) for graphics time

0403 display time = 0;

0404 end

0405

0406

0407 %% %%%

0408 %% Main Run Loop. Initiated from hover at start run point %%

0409 %% %%%

0410 while dist from approach point>1 || P(1,1)>CONST.Pxx f ||P(2,2)>CONST.Pzz f

0411

0412 % Splice GPOPS into shell, recalc the land mode to match end point

0413 [path to old tgt approach slot] ...

0414 =build data for dealer(path, current solution, shell);

0415

0416 % Blend tail for changes in target estimate

0417 path=blend path to updated tgt(path to old tgt, current pos, shell, ...

0418 blend time, blend wave,approach slot, approach point);

192

0419

0420 % Save for post processing

0421 data for dealer all(:,:,loop ctr)=path;

0422

0423 % Send path to Dealer

0424 if sim˜=1

0425 if ANT==1

0426 scaled path=scale path to ANT(path);

0427 SendPathList(conCMDLST,scaled path);

0428 else

0429 SendPathList(conCMDLST,path);

0430 end

0431 end

0432

0433 %% Project down path, calc the conditions and expected cov at

0434 %% next GPOPS update time, bias for being off of commanded position

0435 pos error=path(current pos(1),:) - current pos(2:5);

0436 IC=Calc next IC(current pos, pos error, IC,limits,current solution, ...

0437 P, shell.dt path planner,dt gpops, slot last meas);

0438

0439 %% Plan next optimal path

0440 Start time = cputime;

0441 current solution ...

0442 =trajectory planner(IC,limits,current solution);

0443 current solution.run time = cputime-Start time;

0444 loop time save(loop ctr) = cputime-start loop time;

0445 start loop time = cputime;

0446

0447 %% Get position, time

0448 if sim==1

0449 display fudge=display fudge+display time; %sim: add graphics time

0450 %obtain position from ground station [line num x y z psi]:

0451 current pos=get current position sim(floor((29+cputime ...

0452 -sim clock-display fudge)/shell.dt path planner),path);

0453 else

0454 %obtain position from ground station [line num x y z psi]

0455 current pos=get current position(conTRUTH);

0456

0457 % AFRL vs ANT lab sign swap--temp fix (number 2/3)

0458 current pos(4)=-current pos(4);

0459

0460 % Scale back up if in ANT Center

0461 if ANT==1

0462 current pos=scale pos from ANT(current pos);

0463 end

0464 end

0465

0466

0467 % Run the display, if on

0468 if display on==1

0469 start display time=cputime;

0470 old=plot single display96(current solution, IC,limits,old, ...

0471 current pos,path,meas,points on unit circle);

0472 display time=cputime-start display time; %time spent making display

0473 end

0474

0475 %% Record Data for post processing

0476 actual position(loop ctr,:) = current pos;

0477 current solution.IC = IC;

0478 gpops{loop ctr} = current solution;

0479 x est(loop ctr,1) = CONST.x hat tgt;

0480 z est(loop ctr,1) = CONST.z hat tgt;

0481

0482

0483 %% Get measurement locations from Ground station

0484 if sim==1

193

0485 %12x5 [line num x y z psi] (last 12 meas locations, not in order)

0486 meas locations=get meas locations sim(path,current pos,line meas sim);

0487 else

0488 meas locations=get meas locations(conTRUTH);

0489

0490 if ANT==1

0491 %scale up the meas locations

0492 meas locations=scale pos from ANT(meas locations);

0493 end

0494 end

0495

0496 %% Sort measurements that have not been incorporated (may be empty)

0497 [meas slot last meas] = get beta (meas locations, slot last meas);

0498

0499 %% If there are new measurements, generate new target estimate and cov

0500 %% matrix with Unscented Kalman Filter

0501 new meas=length(meas(:,1));

0502

0503 if new meas > 0

0504 %add measurement noise

0505 meas(:,3)= meas(:,3) ...

0506 + noise (total measurements+1:total measurements + new meas);

0507 total measurements=total measurements + new meas;

0508 for i=1:new meas %UKF

0509 [Xrel P]=UKF Cartesian(meas(i,:),P);

0510 CONST.x hat tgt=Xrel(1)+meas(i,1); %update tgt estimate

0511 CONST.z hat tgt=Xrel(2)+meas(i,2);

0512 end

0513 end

0514

0515 %% Save for post processing

0516 meas save{loop ctr}=meas;
0517

0518 %% Update approach point with new tgt estimate

0519 approach point=[CONST.x hat tgt+limits.x approach offset ...

0520 CONST.z hat tgt+limits.z approach offset];

0521 dist from approach point = norm(approach point - current pos([2 4]));

0522

0523 loop ctr=loop ctr+1;

0524 if display on==1

0525 sprintf(’gpops: %g sec, loop: %g sec, dx= %g, dz= %g’, current solution.run time,loop time save(loop ctr), ...

0526 CONST.x tgt-CONST.x hat tgt,CONST.z tgt-CONST.z hat tgt)

0527 end

0528

0529 end % end main loop

0530

0531

0532 sprintf(’Exiting Main Loop--Required Position & Covariance Achieved’)

0533 Tgt est error at approach point inches=convlength([CONST.x tgt...

0534 -CONST.x hat tgt CONST.z tgt-CONST.z hat tgt],’m’,’in’)

0535 %update display when achieving approach position

0536 if sim==1 && display on==1

0537 old=plot single display96(current solution, IC,limits, ...

0538 old,current pos,path,meas,points on unit circle);

0539 titleA=sprintf(’Approach Parameters Achieved--True Tgt Err: x=%1.3g(in) z=%1.3g(in)’, ...

0540 Tgt est error at approach point inches(1), Tgt est error at approach point inches(2));

0541 title(titleA,’fontsize’,14)

0542 end

0543

0544

0545 %% %%%

0546 %% Initialize Landing Mode, splice approach into shell %%

0547 %% %%%

0548 row2=approach slot;

0549

0550 % X perching profile

194

0551 x remaining=limits.perch offset x-path(approach slot,1);

0552 %use the wave to smooth in, starting backwards from tgt and using only the

0553 %distance that you have left

0554 path x=CONST.x hat tgt+limits.perch offset x-dx from perch...

0555 (dx from perch<x remaining);

0556 row3=row2+length(path x); %find slot to splice into

0557 path(row2+1:row3,1)=path x; %splice in x approach profile

0558 path(row3+1:end,1)=path(row3,1); %hold final x for the rest of the flight

0559

0560 % Z perching profile

0561 z perch=CONST.z hat tgt+limits.perch offset z;

0562 %hold and additional 2 seconds past when x finishes

0563 row3 plus2sec=row3+ceil(2/shell.dt path planner);

0564 path(row2+1:row3 plus2sec,3)=z perch;

0565 dist per line 1in per sec=convlength(1,’in’,’m’)*shell.dt path planner;

0566 % Drop 5 inches (.127m) at 1 in per sec, then 1m at 2in per sec

0567 append3 z=[z perch:-dist per line 1in per sec:z perch-.127, ...

0568 z perch-.127:-2*dist per line 1in per sec:z perch-1]’;

0569 row complete=row3 plus2sec+length(append3 z);

0570 path(row3 plus2sec+1:row complete,3)=append3 z;

0571

0572 if row complete<shell.landing slot

0573 % If no wire engagement, hold the last z position until landing time

0574 path(row complete+1:shell.landing slot,3)=path(row complete,3);

0575 end

0576

0577 % Recalc z from end of run point to 1 m hover (the rest doesn’t change)

0578 row 1m=shell.landing slot+shell.time to descend to 1m ...

0579 /shell.dt path planner;

0580 path(shell.landing slot+1:row 1m,3) ...

0581 =linspace(path(shell.landing slot,3),1,row 1m-shell.landing slot);

0582

0583 last z update=1; %init, just for recording the last updated value

0584

0585

0586 %% Send path

0587 if sim˜=1

0588 if ANT==1

0589 scaled path=scale path to ANT(path);

0590 SendPathList(conCMDLST,scaled path);

0591 else

0592 SendPathList(conCMDLST,path);

0593 end

0594 end

0595

0596 %% Save for post process

0597 data for dealer all(:,:,loop ctr) = path; %save path

0598 actual position(loop ctr,:) = current pos; %save actual position

0599 P save{loop ctr} = P; %save est covariance

0600 loop time save(loop ctr) = cputime-start loop time; %save loop process time

0601 start loop time = cputime; %restart loop time

0602 x est(loop ctr,1) = CONST.x hat tgt;%save current tgt est

0603 z est(loop ctr,1) = CONST.z hat tgt;%save current tgt est

0604 perch loop ctr = loop ctr;%identify when main loop ended

0605 loop ctr = loop ctr+1; %increment loop ctr

0606

0607

0608 %% %%

0609 %% Perch loop: Check position, get measurments (only count those in FOV %%

0610 %% limits). Update tgt if valid measurements. Correct path if valid %%

0611 %% tgt update. Keep loop going until 5 seconds after the system should %%

0612 %% have perched. %%

0613 %% %%

0614

0615 sprintf(’Entered Perching Mode Loop’)

0616 while current pos(1) < row complete

195

0617

0618 %% Get current position and measurement locations

0619 if sim==1 %simulate position from ground station [line num x y z psi]

0620 current pos=get current position sim(floor((29+cputime ...

0621 -sim clock-display fudge)/shell.dt path planner),path);

0622 %12x5 [line num x y z psi] (last 12 meas locations, not in order)

0623 meas locations=get meas locations sim(path,current pos,line meas sim);

0624 else %obtain position from ground station [line num x y z psi]

0625 current pos=get current position(conTRUTH);

0626 meas locations=get meas locations(conTRUTH);

0627

0628 % AFRL vs ANT lab sign swap--temp fix (number 3/3)

0629 current pos(4)=-current pos(4);

0630

0631 if ANT==1

0632 %scale up the meas locations

0633 meas locations=scale pos from ANT(meas locations);

0634 %scale up current position

0635 current pos=scale pos from ANT(current pos);

0636 end

0637 end

0638

0639 %% Check for valid measurments (discard those outside of true FOV)

0640 meas locations=discard meas outside FOV ...

0641 (meas locations,limits.beta min,limits.beta max);

0642

0643 %% Sort measurements that have not been incorporated (may be empty)

0644 [meas slot last meas] = get beta (meas locations, slot last meas);

0645

0646 %% If there are new measurements, update target estimate and cov

0647 %% matrix with Unscented Kalman Filter, then update the path

0648 if ˜isempty(meas)

0649 new meas=length(meas(:,1));

0650 meas(:,3) = meas(:,3) ...

0651 + noise (total measurements+1:total measurements + new meas);

0652 total measurements=total measurements + new meas;

0653 for i=1:new meas %UKF

0654 [Xrel P]=UKF Cartesian(meas(i,:),P);

0655 CONST.x hat tgt=Xrel(1)+meas(i,1); %update tgt estimate

0656 CONST.z hat tgt=Xrel(2)+meas(i,2);

0657 end

0658

0659 %% Update the path

0660 %% (if past hold at approach point and more than 4 in from perch)

0661

0662 %once past the hold, resume updating path

0663 if current pos(1) > row2 && current pos(1)<last update line

0664

0665 %Update x:

0666 x remaining=CONST.x hat tgt+limits.perch offset x-path ...

0667 (current pos(1),1); %dist in x still to go

0668 %(don’t go from actual position, else you’ll correct errors

0669 %for the integrator and never allow it to zero out).

0670 path x=CONST.x hat tgt+limits.perch offset x-dx from perch ...

0671 (dx from perch<x remaining);

0672

0673 %append to path

0674 rowPerch=current pos(1)+length(path x);

0675 path(current pos(1)+1:rowPerch,1)=path x;

0676

0677 %hold that x for the rest of the flight

0678 path(rowPerch+1:end,1)=path(rowPerch,1);

0679

0680 %Update z (move at fixed velocity to correct error)

0681 z perch=CONST.z hat tgt+limits.perch offset z;

0682 if path(current pos(1),3) <= z perch %if cmd is low, move up

196

0683 append4 z=[path(current pos(1),3) ...

0684 +dist per line 1in per sec:dist per line 1in per sec ...

0685 :z perch, z perch]’;

0686 else %if current cmd is high, move down

0687 append4 z=[path(current pos(1),3) ...

0688 -dist per line 1in per sec ...

0689 :-dist per line 1in per sec:z perch, z perch]’;

0690 end

0691

0692 %stop sending new paths at 4 in (should be out of FOV anyway)

0693 if current pos(1)+append4 z > last update line %freeze path

0694 append4 z=append4 z(1:last update line-current pos(1));

0695 end

0696

0697 row4z=current pos(1)+length(append4 z);

0698 path(current pos(1)+1:row4z,3)=append4 z;

0699

0700 %should have frozen at 4in, so the if is redundant--hold until

0701 %2 sec after x reaches perch

0702 if row4z<rowPerch

0703 rows2sec=ceil(2/shell.dt path planner);

0704 path(row4z+1:rowPerch+rows2sec,3)=path(row4z,3);

0705 end

0706

0707 % Drop 5 inches (.127m) at 1 in per sec, then 1m at 2in per sec

0708 append5 z=[path(row4z,3):-dist per line 1in per sec ...

0709 :path(row4z,3)-.127, path(row4z,3)-.127:-2 ...

0710 *dist per line 1in per sec:path(row4z,3)-1]’;

0711 row complete=rowPerch+rows2sec+length(append5 z);

0712 path(rowPerch+rows2sec+1:row complete,3)=append5 z;

0713

0714 if row complete < shell.landing slot

0715 % Hold the last z position until landing mode

0716 path(row complete+1:shell.landing slot,3) ...

0717 =path(row complete,3);

0718 end

0719

0720 % Recalc z from end of run to 1m hover (rest doesn’t change)

0721 path(shell.landing slot+1:row 1m,3)=linspace ...

0722 (path(shell.landing slot,3),1,row 1m-shell.landing slot);

0723

0724 %make last update line happen 4 in from the perch

0725 x perch minus 4in = CONST.x hat tgt+limits.perch offset x-.1;

0726 slots past4in = find(path(:,1)>x perch minus 4in);

0727 last update line = slots past4in(1);

0728

0729

0730

0731 % Send path

0732 if sim˜=1

0733 if ANT==1

0734 scaled path=scale path to ANT(path);

0735 SendPathList(conCMDLST,scaled path);

0736 else

0737 SendPathList(conCMDLST,path);

0738 end

0739 end

0740 end

0741

0742 end

0743

0744 %% Save for post process

0745 data for dealer all(:,:,loop ctr) = path;

0746 actual position(loop ctr,:) = current pos;

0747 loop time save(loop ctr) = cputime-start loop time;

0748 start loop time = cputime;

197

0749 x est(loop ctr,1) = CONST.x hat tgt;

0750 z est(loop ctr,1) = CONST.z hat tgt;

0751 meas save{loop ctr} = meas;

0752 P save{loop ctr} = P;

0753

0754 loop ctr = loop ctr+1;

0755

0756 end %end perch mode loop

0757

0758 x hat at freeze = CONST.x hat tgt;

0759 z hat at freeze = CONST.z hat tgt;

0760

0761 sprintf(’No more path updates being sent’)

0762

0763 Final Tgt est error inches=convlength ...

0764 ([CONST.x tgt-CONST.x hat tgt CONST.z tgt-CONST.z hat tgt],’m’,’in’)

0765

0766 save last run %save workspace

0767

0768 %% %%%%%%%%%%%%%%%%%%%%%%%%%

0769 %% CLOSE THE CONNECTIONS %%

0770 %% %%%%%%%%%%%%%%%%%%%%%%%%%

0771 if sim˜=1

0772 RequestConnectionClose(conTRUTH);

0773

0774 % Close the connection and socket

0775 pnet(conCMDLST, ’close’);

0776 pnet(sockconCMDLST, ’close’);

0777 disp(’TCP/IP Command Connection closed’);

0778

0779 % Close the connection and socket

0780 pnet(conTRUTH, ’close’);

0781 pnet(sockconTRUTH, ’close’);

0782 disp(’TCP/IP TRUTH Connection closed’);

0783 end

B.2 Trajectory Planner GPOPS Interface

The optimal solver calling function is included to provide an example of a GPOPS

interface that is set up to run recursively, for real-time control applications. It provides

an example of how to trim and bootstrap a previous guess, and it highlights the

different inputs required for use with GPOPS 2.4, 3.2, and 3.3. In particular, the

order and size of the outputs change between different versions of the software, but

this is not addressed in any of the current documentation. This can cause significant

errors, particularly with analytic derivatives in relation to the cost, DAE, and event

functions. These are provided with correct output examples for all cases.

198

Trajectory Planner GPOPS Interface Code.

0001 %% %%

0002 %% Trajectory planner %%

0003 %% %%

0004 % This mfile sets up the optimal control problem for the GPOPS software

0005 % Written By: LtCol Steven Ross, AFIT/ENY 2010.

0006 %

0007 % Inputs are initial conditions (the projected position when solution is

0008 % expected to become available), limits (room boundaries, etc.), the last

0009 % solution (the "already flown" portion is cut off and the remainder is

0010 % used as the guess), output is output.solution from GPOPS. If the solution

0011 % does not converge, the old solution is sent back out (so the next next

0012 % round will not use the new (bad) solution for the guess), and an error

0013 % message is recorded and displayed. x hat tgt, z hat tgt is the current

0014 % target location estimate

0015

0016 function current solution = trajectory planner (IC, limits, Last Solution)

0017

0018 global CONST FASTMODE WHAT TO RUN

0019

0020 %% Setup, Define Final approach point

0021 % check limits (if a really bad estimate has put it out of ceiling/floor

0022 % limits, put it on the limit)

0023 xf=CONST.x hat tgt+limits.x approach offset;

0024 zf=min(max(CONST.z hat tgt+limits.z approach offset,limits.min alt), ...

0025 limits.max alt);

0026

0027 FIM0=pinv(IC.P0); %Initial Fisher Information Matrix

0028 straight time=(xf-IC.x0)/limits.xdot max; %min possible time

0029

0030 %% Bounds on initial and terminal values of time

0031 limits.time.min = [IC.t0 IC.t0+straight time]; %[t0 min tf min]

0032 limits.time.max = [IC.t0 IC.t0+max(10,3*straight time)]; %[t0 max tf max]

0033 % use suitable buffer of time, NLT 10 seconds if close to target

0034

0035 %% State Bounds

0036 %x (Using "wall" at approach point):

0037 limits.state.min(1,:) = [IC.x0 IC.x0-2 xf-limits.slush];

0038 limits.state.max(1,:) = [IC.x0 xf xf];

0039

0040 % z

0041 limits.state.min(2,:) ...textcolorcomment

0042 =[IC.z0 limits.min alt max(limits.min alt,zf-limits.slush)];

0043 limits.state.max(2,:) ...

0044 =[IC.z0 limits.max alt min(limits.max alt,zf+limits.slush)];

0045

0046 % x dot

0047 limits.state.min(3,:) = [IC.xdot0 -limits.xdot max 0];

0048 limits.state.max(3,:) = [IC.xdot0 limits.xdot max 0];

0049

0050 % z dot

0051 limits.state.min(4,:) = [IC.zdot0 -limits.zdot max 0];

0052 limits.state.max(4,:) = [IC.zdot0 limits.zdot max 0];

0053

0054 %zeta1

0055 limits.state.min(5,:) = [FIM0(1,1) -100 0];

0056 limits.state.max(5,:) = [FIM0(1,1) 10000 10000];

0057

0058 %zeta2

0059 limits.state.min(6,:) = [FIM0(2,2) -100 0];

0060 limits.state.max(6,:) = [FIM0(2,2) 10000 10000];

0061

199

0062 %zeta3

0063 limits.state.min(7,:) = [FIM0(1,2) -10000 -10000];

0064 limits.state.max(7,:) = [FIM0(1,2) 10000 10000];

0065

0066 %% Control Bounds

0067 limits.control.min = [-limits.xddot max; -limits.zddot max];

0068 limits.control.max = [limits.xddot max; limits.zddot max];

0069

0070 %Bounds on an unknown static parameter

0071 limits.parameter.min = [];

0072 limits.parameter.max = [];

0073

0074 %% Path Limits (maintain FOV)

0075 limits.path.min = limits.beta min;

0076 limits.path.max = limits.beta max;

0077

0078 %% Event Constraints (any positive num indicates final covariance is met)

0079 limits.event.min = [0; 0];

0080 limits.event.max = [1e6; 1e6];

0081

0082

0083

0084 %% Initial Guess==>bootstrap if Last Solution is provided

0085 test = isfield(Last Solution,’time’);

0086 if test %see if the Last Solution exists (won’t if deleted, or 1st run)

0087 %crop out any parts of the guess that will have been flown past

0088 index=find(Last Solution.time>IC.t0); %get index of future slots

0089 if ˜isempty(index) %if there are future points, use as guess

0090 guess.time = [IC.t0; Last Solution.time(index)];

0091 guess.state = [IC.x0 IC.z0 IC.xdot0 IC.zdot0 FIM0(1,1) ...

0092 FIM0(2,2) FIM0(1,2); Last Solution.state(index,:)];

0093 guess.control = [0 0; Last Solution.control(index,:)];

0094 guess.parameter = [];

0095 else %May not be future points (i.e. end of path, final cov not met)

0096 guess.time = [IC.t0; IC.t0+1+straight time];

0097 guess.state(:,1) = [IC.x0; xf];

0098 guess.state(:,2) = [IC.z0; zf];

0099 guess.state(:,3) = [IC.xdot0; 0];

0100 guess.state(:,4) = [IC.zdot0; 0];

0101 guess.state(:,5) = [FIM0(1,1); 200];

0102 guess.state(:,6) = [FIM0(2,2); 200];

0103 guess.state(:,7) = [FIM0(1,2); 200];

0104 guess.control(:,1) = [0; 0];

0105 guess.control(:,2) = [0; 0];

0106 guess.parameter = [];

0107 end

0108 else

0109 guess.time = [IC.t0; IC.t0+straight time];

0110 guess.state(:,1) = [IC.x0; xf];

0111 guess.state(:,2) = [IC.z0; zf];

0112 guess.state(:,3) = [IC.xdot0; 0];

0113 guess.state(:,4) = [IC.zdot0; 0];

0114 guess.state(:,5) = [FIM0(1,1); 200];

0115 guess.state(:,6) = [FIM0(2,2); 200];

0116 guess.state(:,7) = [FIM0(1,2); 200];

0117 guess.control(:,1) = [limits.xdot max; -limits.xdot max];

0118 guess.control(:,2) = [0; 0];

0119 guess.parameter = [];

0120 end

0121

0122 % Setup part of the problem

0123 setup.name = mfilename;

0124 setup.funcs.cost = ’trajectory planner cost’;

0125 setup.funcs.dae = ’trajectory planner dae’;

0126 setup.funcs.event = ’trajectory planner event’;

0127 setup.funcs.link = ’’;

200

0128 setup.limits = limits;

0129 setup.guess = guess;

0130 setup.linkages = [];

0131 setup.direction = ’increasing’; %of independent variable

0132 setup.autoscale = ’on’;

0133 setup.derivatives = ’analytic’;

0134 setup.checkDerivatives = 0;

0135 setup.maxIterations = 500;

0136

0137 if WHAT TO RUN==2 %Additional Options for GPOPS 3.2

0138 %required inputs:

0139 setup.mesh.grid=’hp’; %’hp’ / ’global’

0140 setup.mesh.nodesbottom=2; %fewest number of nodes to use

0141 setup.mesh.on=’yes’; %(’yes’ / ’no’)

0142 setup.method=’radau’; %’radau’,’gauss’,’lobatto’

0143 setup.solver=’snopt’; %ipopt not working yet

0144 setup.limits.intervals=3;

0145 setup.limits.nodesperint=5;

0146

0147 %Optional inputs:

0148 %setup.meshdisplay=’yes’;

0149 %setup.mesh.tolerance; OPTIONAL (Default = 1e-3)

0150 %setup.mesh.iteration; OPTIONAL (Default = 20)

0151 %setup.mesh.guess; OPTIONAL (Default = ’yes’)

0152 %setup.controlinterp; OPTIONAL (Default = ’lagrange’)

0153 %setup.mesh.nodestop; OPTIONAL (Default = setup.nodesbottom+5)

0154 %setup.mesh.splitmult; OPTIONAL (Default = 2)

0155 %setup.mesh.warm=’yes’;% OPTIONAL (Default = ’no’)

0156

0157 elseif WHAT TO RUN==3 %Additional Options to run GPOPS 3.3

0158 setup.mesh.on=’yes’; %(’yes’ / ’no’)

0159 setup.mesh.grid=’hp’; %’local’,’hp’,’global’

0160 setup.mesh.tolerance=1e-3; %OPTIONAL (Default = 1e-3)

0161 setup.mesh.iteration=2;

0162 setup.mesh.guess=’yes’;

0163 setup.controlinterp=’lagrange’;%’lagrange’,’linear’,’cubic’,’spline’

0164 setup.mesh.nodesbottom=2; %fewest number of segment nodes

0165 setup.mesh.nodestop=12; %OPTIONAL generally should be bottom + 10

0166 setup.method=’radau’; %’radau’,’gauss’,’lobatto’

0167 setup.solver=’snopt’; %ipopt not working yet

0168 setup.limits.intervals=3;

0169 setup.limits.nodesperint=5;

0170 setup.mesh.warm=’no’; %OPTIONAL (Default = ’no’)

0171 %setup.mesh.splitmult=2; %OPTIONAL (Default = 2)

0172 end

0173

0174 %Call main function

0175 if FASTMODE ==1 %Use my modified GPOPS (Ross gpops)

0176 setup.fastmode=1; %don’t add this if using normal GPOPS

0177 output = Ross gpops(setup);

0178 else

0179 output = gpops(setup); %use standard GPOPS

0180 end

0181

0182 if output.SNOPT info == 1

0183 current solution=output.solution;

0184 else

0185 sprintf(’*******DID NOT CONVERGE, FORWARDING PREVIOUS SOLUTION*******’)

0186 current solution=Last Solution;

0187 end

0188 current solution.SNOPT info=output.SNOPT info;

201

Trajectory Planner Cost Function.

0001 function [Mayer,Lagrange,DerivMayer,DerivLagrange] ...

0002 =trajectory planner cost(solcost)

0003

0004 % This function works with the optimal path solver, and provides the cost

0005 % and all of the partial derivatives when provided with the path

0006

0007 tf = solcost.terminal.time;

0008 U = solcost.control;

0009 % t0 = solcost.initial.time;

0010 % X0 = solcost.initial.state;

0011 % Xf = solcost.terminal.state;

0012 % t = solcost.time;

0013 % X = solcost.state;

0014 % p = solcost.parameter;

0015 % iphase = solcost.phase

0016

0017 Mayer = tf; % min final time

0018 w = .1; % Slightly weight control to avoid singular arc

0019 Lagrange = w*(U(:,1).ˆ2+U(:,2).ˆ2);

0020

0021 % Analytic Derivatives:

0022

0023

0024 if nargout == 4 % Can be used for analytic derivatives an another option

0025 [N , m]=size(U);

0026 DerivMayer=[zeros(1,15) 1];%[dphi/dX(t0) dphi/dt 0 dphi/dX(tf) dphi/dt f]

0027 dL dX=zeros(N,7);

0028 dL dU=2*w*U;

0029 dL dt=zeros(N,1);

0030 DerivLagrange=[dL dX dL dU dL dt];

0031 else

0032 DerivMayer=[];

0033 DerivLagrange=[];

0034 end

Trajectory Planner Differential Algebraic Equations Function.

0001 function [output1 output2 output3]=trajectory planner dae(soldae)

0002

0003 % This mfile provides the differential algebraic equations for the

0004 % trajectory planner, and provides all of the partial derivatives when

0005 % provided with the path. A path constraint is added to keep the UAV

0006 % within camera FOV limits. Outputs are different based on which version of

0007 % GPOPS is being run, and whether or not the analytic derivatives are being

0008 % used.

0009 %

0010 % Output Formatting:

0011 %

0012 % gpops 2.4, auto derivs:

0013 % output1=[xdot path]; output2=[]; output3=[];

0014 % gpops 2.4, analytic derivs:

0015 % output1=[xdot path]; output2=[deriv dae]; output3=[];

0016 % gpops 3.˜, auto derivs:

0017 % output1=[xdot]; output2=[path]; output3=[];

0018 % gpops 3.˜, analytic derivs:

0019 % output1=[xdot]; output2=[path]; output3=[deriv dae];

0020

202

0021 global CONST WHAT TO RUN

0022

0023 X = soldae.state;

0024 U = soldae.control;

0025 % p = soldae.parameter;

0026 % t = soldae.time;

0027 % iphase = soldae.phase

0028

0029 rx = CONST.x hat tgt-X(:,1); %relative x

0030 rz = CONST.z hat tgt-X(:,2); %relative z

0031 xdot = X(:,3); %velocity x

0032 zdot = X(:,4); %velocity z

0033 xddot = U(:,1); %acceleration x

0034 zddot = U(:,2); %acceleration z

0035 r2 = rx.ˆ2+rz.ˆ2; %range squared

0036 zeta1 dot = 1/CONST.dt meas/CONST.R * (rz./r2).ˆ2; %Deriv of FIM elements

0037 zeta2 dot = 1/CONST.dt meas/CONST.R * (rx./r2).ˆ2;

0038 zeta3 dot = 1/CONST.dt meas/CONST.R * -(rx.*rz)./(r2.ˆ2);

0039

0040 Xdot = [xdot zdot xddot zddot zeta1 dot zeta2 dot zeta3 dot];

0041 path = atan2(rz,rx);

0042 Xdot path = [Xdot path];

0043

0044 %% Calculate analytic derivatives

0045

0046 if (WHAT TO RUN==1 && nargout==2) || (WHAT TO RUN==2 && nargout==3) ...

0047 || (WHAT TO RUN==3 && nargout==3) %if analytic deriv’s are used

0048

0049 [N n]=size(X);

0050

0051 DerivDAE=zeros((n+1)*N, 10); %init. dimensions: N(n+c) x (n+m+q+1)

0052 %(N=nodes, n=states, m=controls, q=parameters, c=paths)

0053

0054 %%f1: dX 1/dt = xdot f is the derivatives of the states

0055 %df1=[df1 dx df1 dz df1 dxdot df1 dzdot df1 dzeta1 df1 dzeta2 ...

0056 % df1 dzeta3 df1 du1 df1 du2 df1 dt];

0057

0058 df1 dxdot = ones(N,1); %Calculate the non-zero partials

0059 DerivDAE(1:N,3)= df1 dxdot; %Update the elements that are non-zero

0060

0061

0062 %%f2: dX 2/dt = zdot

0063 %df2=[df2 dx df2 dz df2 dxdot df2 dzdot df2 dzeta1 df2 dzeta2 ...

0064 % df2 dzeta3 df2 du1 df2 du2 df2 dt];

0065

0066 df2 dzdot = ones(N,1); %Calculate the non-zero partials

0067 DerivDAE(N+1:2*N,4) = df2 dzdot; %Update the elements that are non-zero

0068

0069

0070 %%f3: dX 3/dt=xddot

0071 %df3=[df3 dx df3 dz df3 dxdot df3 dzdot df3 dzeta1 df3 dzeta2 ...

0072 % df3 dzeta3 df3 du1 df3 du2 df3 dt];

0073

0074 df3 du1 = ones(N,1); %Calculate the non-zero partials

0075 DerivDAE(2*N+1:3*N,8) = df3 du1; %Update the elements that are non-zero

0076

0077 %%f4: dX 4/dt=zddot

0078 % df4 = [df4 dx df4 dz df4 dxdot df4 dzdot df4 dzeta1 df4 dzeta2 ...

0079 % df4 dzeta3 df4 du1 df4 du2 df4 dt];

0080

0081 df4 du2 = ones(N,1); %Calculate the non-zero partials

0082 DerivDAE(3*N+1:4*N,9)= df4 du2; %update the non-zero elements

0083

0084

0085 %%f5: dX 5/dt=1/dt meas/R * rzˆ2/(rxˆ2+rzˆ2)ˆ2

0086 % df5 = [df5 dx df5 dz df5 dxdot df5 dzdot df5 dzeta1 df5 dzeta2 ...

203

0087 % df5 dzeta3 df5 du1 df5 du2 df5 dt];

0088

0089 %Calculate the non-zero partials

0090 df5 dx = 4/CONST.dt meas/CONST.R*rz.ˆ2.*rx./r2.ˆ3;

0091 df5 dz = -2/CONST.dt meas/CONST.R*rz.*(rx+rz).*(rx-rz)./r2.ˆ3;

0092 DerivDAE(4*N+1:5*N,1:2)=[df5 dx df5 dz]; %update the non-zero elements

0093

0094 %%f6: dX 6/dt=1/dt meas/R * rxˆ2/(rxˆ2+rzˆ2)ˆ2

0095 % df6=[df6 dx df6 dz df6 dxdot df6 dzdot df6 dzeta1 df6 dzeta2 ...

0096 % df6 dzeta3 df6 du1 df6 du2 df6 dt];

0097

0098 %Calculate the non-zero partials

0099 df6 dx = 2/CONST.dt meas/CONST.R*rx.*(rx+rz).*(rx-rz)./r2.ˆ3;

0100 df6 dz = 4/CONST.dt meas/CONST.R*rx.ˆ2.*rz./r2.ˆ3;

0101 DerivDAE(5*N+1:6*N,1:2)=[df6 dx df6 dz]; %update the non-zero elements

0102

0103

0104 %%f7: dX 7/dt=1/dt meas/R * -rx*rz/(rxˆ2+rzˆ2)ˆ2

0105 % df7 = [df7 dx df7 dz df7 dxdot df7 dzdot df7 dzeta1 df7 dzeta2 ...

0106 % df7 dzeta3 df7 du1 df7 du2 df7 dt];

0107

0108 %Calculate the non-zero partials

0109 df7 dx = 1/CONST.dt meas/CONST.R*rz.*(rz.ˆ2-3*rx.ˆ2)./r2.ˆ3;

0110 df7 dz = 1/CONST.dt meas/CONST.R*rx.*(rx.ˆ2-3*rz.ˆ2)./r2.ˆ3;

0111 DerivDAE(6*N+1:7*N,1:2)=[df7 dx df7 dz]; %update the non-zero elements

0112

0113

0114 % Path Constraint C1: atan2(rz,rx)

0115 % dc1 = [dc1 dx dc1 dz dc1 dxdot dc1 dzdot dc1/dzeta1 dc1/dzeta2 ...

0116 % dc1/dzeta3 dc1 du1 dc1 du2 dc1 dt];

0117

0118 %Calculate the non-zero partials

0119 dc1 dx = rz./r2;

0120 dc1 dz =-rx./r2;

0121 DerivDAE(7*N+1:8*N,1:2) = [dc1 dx dc1 dz];%update the non-zero elements

0122 end

0123

0124 if WHAT TO RUN==1 %Format for GPOPS 2.4

0125 output1=Xdot path;

0126 output3=[];

0127 if nargout==2

0128 output2=DerivDAE;

0129 else

0130 output2=[];

0131 end

0132 elseif WHAT TO RUN==2 || WHAT TO RUN==3 %Format for GPOPS 3.2 & GPOPS 3.3

0133 output1=Xdot;

0134 output2=path;

0135 if nargout==3

0136 output3=DerivDAE;

0137 else

0138 output3=[];

0139 end

0140 end

Trajectory Planner Event Function.

0001 function [events Derivevents]=trajectory planner event(solevents)

0002

0003 % This function provides the evaluation of the event constraint

0004 % (boundary condition on a combination of states), and the analytic

204

0005 % partial derivatives about the constraint. The event constraint used is

0006 % positive when the required final covariance in the associated axis is

0007 % expected to be met.

0008

0009 global CONST WHAT TO RUN

0010

0011 Xf = solevents.terminal.state;

0012 % t0 = solevents.intial.time;

0013 % X0 = solevents.intial.state;

0014 % tf = solevents.terminal.time;

0015 % p = solevents.parameter;

0016 % iphase=solevents.phase;

0017

0018 zeta1 tf = Xf(5);

0019 zeta2 tf = Xf(6);

0020 zeta3 tf = Xf(7);

0021

0022 den1 = (zeta1 tf*zeta2 tf-zeta3 tfˆ2); %Calculate a common denominator once

0023

0024 event1 = CONST.Pxx f * den1 - zeta2 tf;

0025 event2 = CONST.Pzz f * den1 - zeta1 tf;

0026

0027 events = [event1; event2];

0028

0029 if nargout==2 %Calculate analytic partial derivatives

0030

0031 %% NOTE: The order of the derivatives has changed. The old order for

0032 %% GPOPS 2.˜ is Derivevents=[dE/dX(t0) dE/dt0 dE/dX(tf) dE/dtf dE/dp]

0033 %% and is reflected in the body below. The order is changed at the

0034 %% bottom for GPOPS 3.˜

0035

0036 Derivevents=zeros(2,16); %init. size= (e, 2n+2+q)

0037

0038 %%E1=Pxx f(zeta1 f*zeta2 f-zeta3 fˆ2)-zeta2 f

0039 % dE1=[dE1 dx0 dE1 dz0 dE1 dxdot0 dE1 dzdot0 dE1 dzeta1 0 ...

0040 % dE1 dzeta2 0 dE1 dzeta3 0 dE1 dt0 dE1 dxf dE1 dzf ...

0041 % dE1 dxdotf dE1 dzdotf dE1 dzeta1 f dE1 dzeta2 f dE1 dzeta3 f ...

0042 % dE1 dtf dE1 dp];

0043

0044 %Calculate non-zero partial derivatives

0045 dE1 dzeta1 f=CONST.Pxx f*zeta2 tf;

0046 dE1 dzeta2 f=CONST.Pxx f*zeta1 tf-1;

0047 dE1 dzeta3 f=-2*CONST.Pxx f*zeta3 tf;

0048

0049 %%E2=Pzz f(zeta1 f*zeta2 f-zeta3 fˆ2)-zeta1 f

0050 % dE2=[dE2 dx0 dE2 dz0 dE2 dxdot0 dE2 dzdot0 dE2 dzeta1 0 ...

0051 % dE2 dzeta2 0 dE2 dzeta3 0 dE2 dt0 dE2 dxf dE2 dzf ...

0052 % dE2 dxdotf dE2 dzdotf dE2 dzeta1 f dE2 dzeta2 f ...

0053 % dE2 dzeta3 f dE2 dtf dE2 dp];

0054

0055 %Calculate non-zero partial derivatives

0056 dE2 dzeta1 f=CONST.Pzz f*zeta2 tf-1;

0057 dE2 dzeta2 f=CONST.Pzz f*zeta1 tf;

0058 dE2 dzeta3 f=-2*CONST.Pzz f*zeta3 tf;

0059

0060 %update non-zero elements (note--the order of the derivatives has

0061 %changed between GPOPS 2.˜ series and GPOPS 3.˜ series).

0062 if WHAT TO RUN==1 %Format for GPOPS 2.˜

0063 Derivevents(:,13:15)=[dE1 dzeta1 f dE1 dzeta2 f dE1 dzeta3 f;...

0064 dE2 dzeta1 f dE2 dzeta2 f dE2 dzeta3 f];

0065 elseif WHAT TO RUN==2 || WHAT TO RUN==3 %Format for GPOPS 3.˜

0066 Derivevents(:,10)=[dE1 dzeta1 f; dE2 dzeta1 f];

0067 Derivevents(:,12)=[dE1 dzeta2 f; dE2 dzeta2 f];

0068 Derivevents(:,14)=[dE1 dzeta3 f; dE2 dzeta3 f];

0069 end

0070 else

205

0071 Derivevents=[];

0072 end

206

Bibliography

[1] Aidala, Vincent and Sherry Hammel. “Utilization of Modified Polar Coordinates
for Bearings-Only Tracking”. IEEE Transactions on Automatic Control, volume
AC-28, 283–294. March 1983.

[2] Athans, Michael. “Editorial On the LQG Problem”. IEEE Transactions on
Automatic Control, AC-16(6):528, 1971.

[3] Bellman, Richard. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1957.

[4] Benson, David. A Gauss Pseudospectral Transcription for Optimal Control.
Ph.D. Dissertation, Massachusetts Institute of Technology, 2005.

[5] Benson, David, Geoffrey T. Huntington, Tom P. Thorvaldsen, and Anil V.
Rao. “Direct Trajectory Optimization and Costate Estimation via an Or-
thogonal Collocation Method”. Journal of Guidance, Control, and Dynamics,
29(6):1435–1440, 2006.

[6] Betts, J. T. and W. P. Huffman. “A Sparse Nonlinear Optimization Algorithm”.
Journal of Optimization Theory and Applications, 82:519–541, 1994.

[7] Betts, John T. “Survey of Numerical Methods for Trajectory Optimization”.
Journal of Guidance, Control, and Dynamics, 21(2):193–207, 1998.

[8] Betts, John T. Practical Methods for Optimal Control Using Nonlinear Pro-
gramming. Advances in Design and Control. SIAM, Philadelphia, PA, 2001.

[9] Bishop, Adrian N. and Pubudu N. Pathirana. “Optimal Trajectory Character-
ization for a Pursuer Navigation Scheme”. IEEE International Conference on
Networking, Sensing and Control, 998–1003. Sanya, China, 6-8 April 2008.

[10] Bollino, Kevin and I. Michael Ross. “A Pseudospectral Feedback Method for
Real-Time Optimal Guidance of Reentry Vehicles”. Proceedings of the 2007
American Control Conference, 3861–3867. New York City, NY, 11-13 July 2007.

[11] Brown, Robert G. and Patrick Y. C. Hwang. Introduction to Random Signals
and Applied Kalman Filtering. John Wiley & Sons, New York, NY, 3rd edition,
1997.

[12] Bryson, Jr., Arthur E. “Optimal Control-1950 to 1985”. IEEE Control Systems,
16(3):26–32, 1996.

[13] Bryson, Jr., Arthur E. and Yu Chi Ho. Applied Optimal Control. Hemisphere
Publishing Corp., Washington D.C., 1975.

207

[14] Burl, Jeffery B. Linear Optimal Control. Addison Wesley Longman, Inc., Menlo
Park, CA, 1999.

[15] Byrd, R. H., J. Nocedal, and R. A. Waltz. “KNITRO: An Integrated Package
for Nonlinear Optimization”. Large Scale Nonlinear Optimization, 35–39, 2006.

[16] Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods
in Fluid Dynamics. Springer-Verlag, New York, NY, 1988.

[17] Chavanne, Bettina H. “Small UAVs May Recharge on Power Lines”. Mili-
tary.com, 13 Dec 2007. URL http://www.military.com/features/0,15240,

158240,00.html.

[18] Chen, Jyun-Jye F. and Bruce A. Conway. “Neighboring Optimal Feedback
Control Using Collocation and Nonlinear Programming”. AIAA/AAS Astrody-
namics Conference, 512–520. Hilton Head Island, SC, 12 August 1992.

[19] Cory, Rick and Russ Tedrake. “Experiments in Fixed-Wing UAV Perching”.
Proceedings of the 2008 AIAA Guidance, Navigation, and Control Conference.
Honolulu, HI, 18-21 August 2008.

[20] Cuthrell, J. E. and L. T. Biegler. “Simultaneous Optimization and Solution
Methods for Batch Reactor Control Profiles”. Computers and Chemical Engi-
neering, 13(1/2):49–62, 1989.

[21] Darby, Christopher L., William W. Hager, and Anil V. Rao. “An hp-Adaptive
Pseudospectral Method for Solving Optimal Control Problems”. Optimal Con-
trol Applications and Methods, 32, August, 2010.

[22] Dickmanns, E. D. and H. Well. “Approximate solution of Optimal Control Prob-
lems Using Third-Order Hermite Polynomial Functions”. Proceedings of the 6th
Technical Conference on Optimization Techniques. Springer-Verlag, 1975.

[23] Dobrokhodov, Vladimir N., Isaac I. Kaminer, and Kevin D. Jones. “Vision-
Based Tracking and Motion Estimation for Moving Targets Using Unmanned
Air Vehicles”. Journal of Guidance, Control, and Dynamics, 31(4):907–917,
July-August, 2008.

[24] Eele, Alison and Arthur Richards. “Comparison of Branching Strategies for
Path-Planning with Avoidance using Nonlinear Branch-and-Bound”. AIAA
Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii,
18-21 August 2008.

[25] Elnagar, Gamal, Mohammad Kazemi, and Mohsen Razzaghi. “Pseudospectral
Legendre Method for Discretizing Optimal Control Problems”. IEEE Transac-
tions on Automatic Control, 40(10):1793–1796, 1995.

208

http://www.military.com/features/0,15240,158240,00.html
http://www.military.com/features/0,15240,158240,00.html

[26] Euler, L. Institutiones Calculi Integralis. Academy of Sciences, St. Petersburg,
Russia, 1768.

[27] Fahroo, Fariba and I. Michael Ross. “Pseudospectral Methods for Infinite-
Horizon Optimal Control Problems”. Journal of Guidance, Control, and Dy-
namics, 31(4):927–936, 2008.

[28] Farrokh, Arsolan and Vikram Krishnamurthy. “Optimal Threshold Policies
for Hard-Kill of Enemy Radars With High Speed Anti-Radiation Missiles
(HARMS)”. ICASSP Proceedings of the IEEE International Conference on on
Acoustics, Speech, and Signal Processing, volume 3. IEEE, Toulouse, France,
14-19 May 2006.

[29] Fawcett, J. A. “Effect of Course Maneuver on Bearings-Only Range Estima-
tion”. IEEE Transactions on Acoustic, Speech, and Signal Processing, 36(8),
August 1988.

[30] Feldbaum, A. A. “Dual Control Theory I-IV”. Automation and Remote Control,
21, 22:874–880, 1033–1039, 1–12, 109–121, 1960-61.

[31] Flatley, Joseph L. “Cyber Technology’s UAV Perches, Stares,
Makes Us a Little Uncomfortable”. Engadget.com, 17 De-
cember 2009. URL http://www.engadget.com/2009/12/17/

cyber-technologys-uav-perches-stares-makes-us-a-little-uncomf/.

[32] Fornberg, Bengt. A Practical Guide to Pseudospectral Methods. Cambridge
University Press, New York, NY, 1998.

[33] Frew, Eric W. Observer Trajectory Generation for Target-Motion Estimation
Using Monocular Vision. Ph.D. Dissertation, Stanford University, August 2003.

[34] Garg, D., M. A. Patterson, C. L. Darby, F. Francolin, G. T. Huntington, W. W.
Hager, and A. V. Rao. “Direct Trajectory Optimization and Costate Estima-
tion of Finite-Horizon and Infinite-Horizon Optimal Control Problems Using
a Radau Pseudospectral Method”. Computational Optimization and Applica-
tions, 6 October 2009.

[35] Garg, Divya, Michael Patterson, Anil V. Rao, William W. Hager, David A.
Benson, and Geoffrey T. Huntington. “A Unified Framework for the Numerical
Solution of Optimal Control Problems Using Pseudospectral Methods”. Auto-
matica, 1–9, 2010.

[36] Gavish, Motti and Anthony Weiss. “Performance Analysis of Bearing-Only
Target Location Algorithms”. IEEE Transactions of Aerospace and Electronic
Systems, 28(3):817–828, 1992.

209

http://www.engadget.com/2009/12/17/cyber-technologys-uav-perches-stares-makes-us-a-little-uncomf/
http://www.engadget.com/2009/12/17/cyber-technologys-uav-perches-stares-makes-us-a-little-uncomf/

[37] Geiger, Brian R. and Joseph F. Horn. “Neural Network Based Trajectory Opti-
mization for Unmanned Aerial Vehicles”. 47th AIAA Aerospace Sciences Meet-
ing Including the New Horizons Forum and Aerospace Exposition. American
Institute of Aeronautics and Astronautics, Orlando, FL, 5-8 January 2009.

[38] Geiger, Brian R., Joseph F. Horn, Gregory L. Sinsley, James A. Ross, Lyle N.
Long, and Albert F. Niessner. “Flight Testing a Real-Time Direct Collocation
Path Planner”. Journal of Guidance, Control, and Dynamics, 31(6):1575–1586,
2008.

[39] Gill, Philip E., Walter Murray, and Michael A. Saunders. “SNOPT: An SPQ
Algorithm for Large-Scale Constrained Optimization”. SIAM Journal on Op-
timization, 12(4):979–1006, 2002.

[40] Goldstine, H. A History of the Calculus of Variations from the 17th Century
through the 19th Century. Springer-Verlag, 1980.

[41] Gong, Qi, Wei Kang, S. Bedrossian, Nazareth, Fariba Fahroo, Pooya Sekhavat,
and Kevin Bollino. “Pseudospectral Optimal Control for Military and Indus-
trial Applications”. Proceedings of the 47th IEEE Conference on Decision and
Control, 4128–4142. New Orleans, LA, December 12-14 2007.

[42] Goodman, G. and J. Knowles. “Joint DIRCM Program Nearing RFP Stage”.
Journal of Electronic Defense, 32(10):18–20, 2009.

[43] Gutierrez, Gustavo. Personal interview. Commander of Ohio class submarine
USS Pennsylvania (SSBN-735), 5 January 2010.

[44] Hammel, S. E., P. T. Liu, E. J. Hilliard, and K. F. Gong. “Optimal Observer
Motion for Localization with Bearing Measurements”. Computers and Mathe-
matics with Applications, 18(1-3):171–186, 1989.

[45] Hammel, Sherry and Vincent J. Aidala. “Observability Requirements for
Three-Dimensional Tracking via Angle Measurements”. IEEE Transactions on
Aerospace and Electronic Systems, volume AES-21, 200–207. March 1985.

[46] Hammel, Sherry, Vincent J. Aidala, Kai F. Gong, and Allen G. Lindgren.
“Recursive versus Batch Processing Algorithms for Bearings-Only Tracking”.
Oceans Conference Record, 50–61, 1983.

[47] Hammel, Sherry E. Optimal Observer Motion for Bearings-Only Localization
and Tracking. Ph.D. Dissertation, University of Rhode Island, 1988.

[48] Hargraves, C. R. and S. W. Paris. “Direct Trajectory Optimization Using
Nonlinear Programming and Collocation”. Journal of Guidance, Control, and
Dynamics, l0(4):338–342, 1987.

210

[49] Helferty, James P. and David R. Mudgett. “Optimal Observer Trajectories
for Bearings-only Tracking by Minimizing the Trace of the Cramer-Rao Lower
Bound”. Proceedings of the IEEE 32nd Conference on Decision and Control.
San Antonio, TX, December 1993.

[50] Helferty, James P., David R. Mudgett, and John E. Dzielski. “Trajectory Op-
timization for Minimum Range Error in Bearings-Only Source Localization”.
Proceedings of the Conference on Oceans ’93, volume 2, 229–234. 12-18 Oct
1993.

[51] Ho, K. C. and Y. T. Chan. “An Unbiased Estimator for Bearings-Only Tracking
and Doppler-Bearing Tracking”. IEEE Proceedings ICASSP ’03, 169–172. Hong
Kong, China, 3 April 2003.

[52] Hodgson, Jeremy A. “Trajectory Optimization Using Differential Inclusion to
Minimize Uncertainty in Target Location Estimation”. AIAA Guidance, Navi-
gation, and Control Conference and Exhibit. San Francisco, CA, 15-18 August
2005.

[53] Hull, D., J. Speyer, and D. Burris. “Linear-Quadratic Guidance Law for Dual
Control of Homing Missiles”. AIAA Journal of Guidance, Control, and Dy-
namics, 13(1), 1990.

[54] Humbert, Sean J., Richard M. Murray, and H. Dickinson, Michael. “Pitch-
Altitude Control and Terrain Following Based on Bio-Inspired Visuomotor Con-
vergence”. AIAA Guidance, Navigation, and Control Conference and Exhibit.
San Francisco, CA, 15-18 August 2005.

[55] Hurni, Michael A., Pooya Sekhavat, and I. Michael Ross. “Autonomous Tra-
jectory Planning Using Real-Time Information Updates”. 26th AIAA Applied
Aerodynamics Conference. Honolulu, HI, 18-21 August 2008.

[56] Jain, S. and P. Tsiotras. “Trajectory Optimization Using Multiresolution
Techniques”. Journal of Guidance, Control, and Dynamics, 31(5):1424–1436,
September-October 2008.

[57] Johnson, Eric N., Anthony J. Calise, Yoko Watanabe, Jincheol Ha, and
James C. Neidhoefer. “Real-Time Vision-Based Relative Aircraft Navigation”.
Journal of Aerospace Computing, Information, and Communication, 4(4):707–
738, 2004.

[58] Jorris, Timothy R. Common Aero Vehicle Autonomous Reentry Trajectory
Optimization Satisfying Waypoint and No-Fly Zone Constraints. Ph.D. Disser-
tation, Air Force Institute of Technology, 2007.

[59] Julier, Simon J. and Jeffrey K. Uhlmann. “Unscented Filtering and Nonlinear
Estimation”. Proceedings of the IEEE, 92(3):401–422, 2004.

211

[60] Kalman, Rudolph E. Contributions to the Theory of Optimal Control. Boletin
de la Sociedad Mathematica Mexicana, 1960.

[61] Kalmár-Nagy, Tamás, Raffaello D’Andrea, and Pritam Ganguly. “Near-Optimal
Dynamic Trajectory Generation and Control of an Omnidirectional Vehicle”.
Robotics & Autonomous Systems, 46(1):47–65, January 2004.

[62] Karelahti, Janne and Kai Virtanen. “Automated Generation of Realistic Near-
Optimal Aircraft Trajectories”. Journal of Guidance, Control, and Dynamics,
31(3):674, 2008.

[63] Karlsson, Rickard and Fredrik Gustafsson. “Range Estimation Using Angle-
Only Target Tracking with Particle Filters”. Proceedings of the American Con-
trol Conference, volume 5, 3743–3748. Arlington, VA, 25-27 June 2001.

[64] Kim, Jinwhan and Stephen Rock. “Stochastic Feedback Controller Design Con-
sidering the Dual Effect”. AIAA Guidance, Navigation, and Control Confer-
ence. 2006.

[65] Kincaid, David and Ward Cheney. Numerical Analysis: Mathematics of Scien-
tific Computing. American Mathematical Society, Providence, RI, third edition,
2002.

[66] Kirk, Donald E. Optimal Control Theory, An Introduction. Dover, Mineola,
NY, 2004.

[67] Le Cadre, J. P. “Optimization of the Observer Motion for Bearings-Only Target
Motion Analysis”. Proceedings of the 36th Conference on Decision and Control,
volume 4, 3126–3131. San Diego, CA, December 1997.

[68] Le Cadre, J. P. and O. Tremois. “Bearings-Only Tracking for Maneuvering
Sources”. IEEE Transactions on Aerospace and Electronic Systems, 34(1):179–
193, 1998.

[69] Lerro, Don and Yaakov Bar-Shalom. “Tracking with Debiased Consistent Con-
verted Measurements Versus EKF”. IEEE Transactions on Aerospace and Elec-
tronic Systems, 29(3):1015–1022, 1993.

[70] Leung, Cindy, Shoudong Huang, and Gamini Dissanayake. “Trajectory Plan-
ning for Multilple Robots in Bearing-Only Target Localisation”. IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2312–2317. Ed-
monton, AB, Canada, 2-6 August 2005.

[71] Lewis, L. R., I. Michael Ross, and Qi Gong. “Pseudospectral Computational
Methods for Motion Planning and Obstacle Avoidance”. Proceedings of the 47th
IEEE Conference on Decision and Control. New Orleans, LA, 12-14 December
2007.

212

[72] Lindgren, Allen G. and Kai F. Gong. “Position and Velocity Estimation via
Bearing Observations”. IEEE Transactions on Aerospace and Electronic Sys-
tems, AES-14(4):564–577, 1978.

[73] Liu, P. T. “An Optimum Approach in Target Tracking with Bearing Mea-
surements”. Journal of Optimization Theory and Applications, 56(2):205–214,
1988.

[74] Logothetis, A., A. Isaksson, and R. J. Evans. “An Information Theoretic Ap-
proach to Observer Path Design for Bearings-Only Tracking”. Proceedings of
the 36th IEEE Conference on Decision and Control, 4:3132–3137, 1997.

[75] Luenberger, David G. Optimization by Vector Space Methods. John Wiley &
Sons, New York, NY, 1969.

[76] MacCabe, B. J. “Accuracy and Tactical Implications of Bearings-Only Ranging
Algorithms”. Operation Research, 33(1):95–109, 1985.

[77] Maybeck, Peter S. Stochastic Models, Estimation, and Control, volume 2. Aca-
demic Press, New York, NY, 1982.

[78] Maybeck, Peter S. Stochastic Models, Estimation, and Control, volume 1.
Navtech Book and Software Store, Arlington, VA, 1994.

[79] Metthies, L. and T. Kanade. “Kalman Filter-based Algorithms for Estimat-
ing Depth from Image Sequences”. International Journal of Computer Vision,
3:209–236, 1989.

[80] Milam, Mark B., Kudah Mushambi, and Richard M. Murray. “A New Com-
putational Approach to Real-Time Trajectory Generation for Constrained Me-
chanical Systems”. 39th IEEE Conference on Decision and Control, 845–851.
Sydney, NSW, Australia, 12-15 December 2000.

[81] Misra, Pratap and Per Enge. Global Positioning System: Signals, Measure-
ments, and Performance. Ganga-Jamuna Press, Lincoln, MA, 2001.

[82] Nardone, Steven C. and Vincent J. Aidala. “Observability Criteria for Bearings-
Only Target Motion Analysis”. IEEE Transactions on Aerospace and Electronic
Systems, AES-17(2):162–166, March 1981.

[83] Nelson, Robert C. Flight Stability and Automatic Control. McGraw-Hill Com-
panies, Inc., Boston, MA, 2nd edition, 1998.

[84] Oshman, Yaakov and Pavel Davidson. “Optimal Observer Trajectories for Pas-
sive Target Localization Using Bearing-Only Measurements”. AIAA Guidance,
Navigation, and Control Conference. San Diego, CA, 29-31 July 1996.

213

[85] Oshman, Yaakov and Pavel Davidson. “Optimization of Observer Trajectories
for Bearings-Only Target Localization”. IEEE Transactions on Aerospace and
Electronic Systems, 35(3):892–902, July 1999.

[86] Paris, S. W. “Enhanced Procedures for Direct Trajectory Optimization Using
Nonlinear Programming and Implicit Integration”. Collection of Technical Pa-
pers - AIAA/AAS Astrodynamics Specialist Conference, volume 2. 21-24 August
2006.

[87] Passerieux, J. M. and D. Van Cappel. “Optimal Observer Maneuver for
Bearings-Only Tracking”. IEEE Transactions on Aerospace and Electronic Sys-
tems, 34(3):777–7888, 1998.

[88] Ponda, Sameera S., Richard M. Kolacinski, and Emilio Frazzoli. “Trajectory
Optimization for Target Localization Using Small Unmanned Aerial Vehicles”.
AIAA Guidance, Navigation, and Control Conference. Chicago, IL, 10-13 Au-
gust 2009.

[89] Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko.
The Mathematical Theory of Optimal Processes. Interscience, New York, NY,
1962.

[90] Rao, A. V., D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin, and
G. T. Huntington. “Algorithm 902: GPOPS, A Matlab R⃝ Software for Solv-
ing Multiple-Phase Optimal Control Problems Using the Gauss Pseudospectral
Method”. ACM Transactions on Mathematical Software, 37(2):1–39, April-June
2010.

[91] Rao, Anil V. “Extension of a Pseudospectral Legendre Method to Non-
Sequential Multiple-Phase Optimal Control Problems”. AIAA Guidance, Nav-
igation, and Control Conference and Exhibit. Austin, TX, Aug.11-14 2003.

[92] Rao, Anil V., David Benson, Christopher L. Darby, Camila Francolin, Michael
Patterson, Ilyssa Sanders, and Geoffrey T. Huntington. “User’s Manual for
GPOPS Version 2.3: A Matlab R⃝ Software for Solving Multiple-Phase Optimal
Control Problems Using the Gauss Pseudospectral Method”. August, 2009.

[93] Rao, Anil V., Sean Tang, and Wayne P. Hallman. “Numerical Optimization
Study of Multiple-Pass Aeroassisted Orbital Transfer”. Optimal Control Apli-
cations and Methods, 23:215–238, 2002.

[94] Reddien, G. W. “Collocation at Gauss Points as a Discretization in Optimal
Control”. SIAM Journal on Control and Optimization, 17(2), March 1979.

[95] Ross, I. Michael. “Pseudospectral Feedback Control: Foundations, Examples
and Experimental Results”. AIAA Guidance, Navigation, and Control Confer-
ence, volume 4. Keystone, CO, 21-24 August 2006.

214

[96] Ross, I. Michael and Fariba Fahroo. “A Direct Method for Solving Nonsmooth
Optimal Control Problems”. Proceedings of the 15th IFAC World Congress,
volume 15. Barcelona, Spain, 2002.

[97] Ross, James A., Brian R. Geiger, Gregory L. Sinsley, Joseph F. Horn, Lyle N.
Long, and Albert F. Niessner. “Vision-Based Target Geolocation and Optimal
Surveillance on an Unmanned Aerial Vehicle”. AIAA Guidance, Navigation and
Control Conference and Exhibit. Honolulu, HI, 18-21 August 2008.

[98] Royce, Robert. Personal Interview. Powerline Urban Sentry (PLUS) Program
Control, Defense Research Associates, Inc., 9 February and 13 April 2010.

[99] Rysdyk, R. “UAV Path Following for Constant Line-of-Sight”. 2nd AIAA
Unmanned Unlimited Conference, Workshop, and Exhibit. San Diego, CA, 15-
18 September 2003.

[100] Sekhavat, Pooya, Andrew Fleming, and I. Michael Ross. “Time-Optimal Non-
linear Feedback Control for the NPSAT1 Spacecraft”. Proceddings of the 2005
IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
843–850. Monterey, CA, 24-28 July 2005.

[101] Seywald, Hans, Renjith R. Kumar, and Todd A. Wetzel. “Does the Pinciple of
Optimality Hold Along Collocation Solutions?” AIAA Guidance, Navigation
and Control Conference. San Diego, CA, 29-31 July 1996.

[102] Skoglar, Per, Umut Orguner, and Fredrik Gustafsson. “On Information Mea-
sures based on Particle Mixture for Optimal Bearings-only Tracking”. IEEE
Aerospace Conference Proceedings, 1–13, 2009.

[103] Speyer, J., D. Hull, V. Tseng, and S. Larson. “Estimation Enhancement by Tra-
jectory Modulation for Homing Missiles”. AIAA Journal of Guidance, Control,
and Dynamics, 7(3), 1984.

[104] Spiess, F. N. “Complete Solution of the Bearings Only Approach Problem”. UC
San Diego: Scripps Institution of Oceanography, MPL Technical Memorandum.
15 December 1953.

[105] Spingarn, Karl. “Passive Position Location Estimation Using the Extended
Kalman Filter”. IEEE Transactions on Aerospace and Electronic Systems, vol-
ume AES-23, 558–567. July 1987.

[106] Strizzi, Jon, I. Michael Ross, and Fariba Fahroo. “Towards Real-Time Compu-
tation of Optimal Controls for Nonlinear Systems”. AIAA Guidance, Naviga-
tion, and Control Conference and Exhibit. Monterey, CA, 5-8 Aug 2002.

[107] von Stryk, Oskar. “Numerical Solution of Optimal Control Problems by Direct
Collocation”. Optimal Control Theory and Numerical Methods, 111:129–143,
1993.

215

[108] Taylor, James H. “The Cramér-Rao Estimation Error Lower Bound Computa-
tion for Deterministic Nonlinear Systems”. IEEE Transactions on Automatic
Control, AC-24(2):343–344, 1979.

[109] The Small Unmanned Aerial Systems News Source. “sUAS News”, March 2010.
URL http://www.suasnews.com/.

[110] Tsuchiya, Takeshi, Masahiro Miwa, and Shinji Suzuki. “Real-Time Flight
Trajectory Optimization and Its Verification in Flight”. Journal of Aircraft,
46(4):1468–1470, July-August 2009.

[111] Van Trees, H. L. Detection, Estimation, and Modulation Theory, Part I. Wiley,
New York, 1968.

[112] Veth, Michael J. Fusion of Imaging and Inertial Sensors for Navigation. Ph.D.
Dissertation, Air Force Institute of Technology, 2006.

[113] Watanabe, Yoko, Eric N. Johnson, and Anthony J. Calise. “Vision-Based Guid-
ance Design from Sensor Trajectory Optimization”. AIAA Guidance, Naviga-
tion, and Control Exhibit. Keystone, CO, 21-24 Auguest 2006.

[114] Watanabe, Yoko, Eric N. Johnson, and Anthony J. Calise. “Stochastically
Optimized Monocular Vision-Based Guidance Design”. AIAA Guidance, Navi-
gation and Control Conference and Exhibit. Hilton Head, South Carolina, 20-23
August 2007.

[115] Watanabe, Yoko, Eric N. Johnson, and Anthony J. Calise. “Stochastic Guid-
ance Design for UAV Vision-Based Control Applications”. AIAA Guidance,
Navigation, and Control Conference and Exhibit. Honolulu, HI, 18-21 August
2008.

[116] Wickenheiser, Adam M. and Ephrahim Garcia. “Optimization of Perching Ma-
neuvers Through Vehicle Morphing”. Journal of Guidance, Control, and Dy-
namics, 31(4):815–823, August 2008.

[117] Williams, Paul. “Three-Dimensional Aircraft Terrain-Following via Real-Time
Optimal Control”. Journal of Guidance, Control, and Dynamics, 30(4):1201–
1205, 2007.

[118] Wise, Richard and Rolf T. Rysdyk. “UAV Coordination for Autonomous Target
Tracking”. AIAA Guidance, Navigation and Control Conference and Exhibit.
Keystone, CO, 21-24 August 2006.

[119] Yan, Hui. “Real-time Computation of Neighboring Optimal Control Laws”.
AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey,
CA, 5-8 Aug 2002.

216

http://www.suasnews.com/

[120] Zadeh, L. A. “The Evolution of Systems Analysis and Control: A Personal
Perspective”. IEEE control systems /IEEE Control Systems Society, 16(3):95–
98, June 1996.

217

Index

This index is conceptual and does not designate every occurrence of a keyword

�AVIARI, 145, 147, 157, 185

active ranging, 3
adaptive grid refinement, 24, 129
AFRL, 6–8, 147
analytic derivatives, 128
angular velocities, 136
ANT Center, 131, 145, 157, 185
approach point, 9
asynchronous control loops, see process

threading

bank angle limitation, 139
basis functions, 21
battery limitations, 6, 39
bearing-only systems, 3
bearing-only tracking, 9, 28–32, 51–61, 166
Bellman’s principle of optimality, 107
body frame, 42
Bolza Cost Function, 82

calculus of variations, 17
Carathéodory-� feedback, 26
Chebyshev points, 23
collocation, 15, 20, 22–25, 124–127
constraints, 85–90, 127, 167
continuous uncertainty propagation, 76
contributions, 12
costate, 96
course planning case study, 95–105
covariance propagation, 87
Cramér-Rao Lower Bound (CRLB), 27,

30, 63–65

Defense Research Associates (DRA), 6, 7,
39

differentiation matrix, 125
Lobatto, 130

direct methods, 19, 108, 116
direction cosine matrix (DCM)

camera to body frame, 46
body to nav frame, velocity, 137
nav to body frame, 139

disturbance estimation feedback, 103
dual control theory, 27, 32–38, 62, 75
dynamic programming, 18, 30, 33

Ekelund ranging, 4
energy harvesting, 6–8, 14, 39, 166
engine model, 176
epoch, 10
error integration, 91, 101, 103, 112
Euler angles, 136
event constraint, 82
exhaustive search, 33
Extended Kalman Filter (EKF), 46, 51–

52
polar, 48

extremals, 17

feed-forward system, see recursive open-
loop control

field-of-view (FOV), 10, 41, 52, 86
Fisher Information Matrix (FIM), 27, 28,

63–66, 78, 167, 170
flight control

gains, 183
heading channel, 141
horizontal channels, 139
vertical channel, 137

flight test results, 157–163
free final time, 82, 168

Gauss Pseudospectral Method (GPM), 21,
106

Gauss-Markov process, 110

218

Gibb’s phenomenon, 24
GPOPS, 124, 127, 185, 198
ground effect, 138
ground station, 132, 134, 136, 142, 175

Hamiltonian, 84–85, 96, 99
hardware, 107, 132
HARM, 3, 14, 38, 172
heaving derivative, 136
Heaviside step function, 83
HEKF, 15, 52–57

algorithm, 57–58
Hessian, 20, 85, 128
hidden Markov model (HMM), 30
homing trajectory, 100
Hough transform, 40
hp, see adaptive grid refinement

IMU, 175
indirect methods, 19
information states, 13, 78–81, 167

dynamics, 79
initial conditions, 87, 117, 120
initial guess, 19, 75, 91, 108, 116, 119
integral control, 175

anti-windup, 140
reset logic, 139
saturation, 139

IRSTS, 3, 5

Karush-Kuhn Tucker (KKT) conditions,
22

knots, see segments

Lagrange mulipliers, 96
least squares filter, 52
Legendre polynomial, 124
Legendre-Gauss-Lobatto Method (LPM),

21
linear quadratic Gaussian (LQG), 18, 36
linear quadratic regulator (LQR), 18, 35–

36
local minima, 108, 152
localization, 9, 28–32, 62, 75

maximum-likelihood filter, 52
measurement function, 44

Jacobian, 66, 88
polar, 48, 58

missed approach plan, 116
mixer, 176
model predictive control (MPC), 30
moment equations, 136
moments of inertia, 136
Monte Carlo simulation, 148–156

Nano-Hummingbird, 5
navigation frame, 42
necessary conditions, 17, 25, 84, 96
neighboring optimal control (NOC), 27,

120
non-holonomic path, 33
non-linear programming (NLP), 20, 124,

127
non-zero mean disturbances, 97, 110, 169

observability Grammian, 67
one-step ahead approach, 36, 67
optimal control, 17
optimal control problem formulation, 81
optimal feedback control, 93–94
optimal steering, 100
optimality conditions, see necessary con-

ditions
orthogonal polynomials, 21

particle filter, 30, 52
passive tracking, 3
path blending, 120, 169
path planner, 9–10, 49, 57, 69, 78, 108,

116–130, 134, 169, 173, 185–206
phases, see segments
pitch angle limitation, 139
PLUS, 6
polar coordinates, 47
Pontryagin’s maximum principle, 18, 26,

84
pop-up threats, 107
power harvesting, see energy harvesting

219

power line, 7, 10, 39, 115, 131, 171
process threading, 123, 169
pseudo-linear tracker, 52
pseudospectral methods, 12, 16, 21–25,

168

quadrature, 23, 124
quadrotor, 131–146, 166

autopilot, 133, 142
simulation, 135

Radau Pseudospectral Method (RPM), 21,
124

RavenⓇ B, 6
real-time implementation, 21, 25–27, 32–

37, 93–94
recursive open-loop control, 91–95, 113,

169
residual matrix, 130
Rodrigues’ formula, 124
RPV, 8
RTOC, 12–14, 168

algorithm, 115–130
structure, 91–114, 169

Runge phenomenon, 23
Runge-Kutta integration, 26

SAM avoidance case study, 105–113
segments, optimal control problem, 24, 129
segments, perching problem, 39–41, 116

acquisition segment, 40
approach segment, 40
flare segment, 40, 122

sequential quadratic programming (SQP),
20

servo-sensor board, 135, 175
shooting method, 70–75
Sigma-Point Kalman Filter, see UKF
Simulink model, 173
single-shot solution, 75, 167
singular arc, 83–85
SNOPT, 124, 127
spectral methods, 21
Spiess ranging, 4

state augmentation, 81
state transition matrix, 66
stereo ranging, 4
sUAS, 5–8, 14, 38, 39, 69, 77, 82, 86, 117,

167, 170
submarine, 3, 11, 38, 170
system identification, 144
system model, 42

TCP, 123, 186
time correlated disturbances, 110
time transformation, 22
timing, calculation loop, 154
trajectory optimization, 17, 27–38, 62, 166
transcription, see collocation
two degree-of-freedom control, 92
two-point boundary value problem (TP-

BVP), 1, 25, 35, 96

UAV, 8
Unscented Kalman Filter (UKF), 13, 15,

52, 59–166
unscented transformation, 12, 59

Vandermonde Matrix, 125
variable calculation time, 118–120
Vicon motion capture system, 85, 132, 145,

147

Wasp III, 6
wind estimation filter, 113
wind model, 110

220

Vita

Lieutenant Colonel Steven M. Ross was raised in

Sacramento, California, and was a distinguished gradu-

ate of the United States Air Force Academy’s class of

1996, receiving a Bachelor of Science degree in Engineer-

ing Sciences and a minor in Japanese Language Studies.

Following his commission, then Lieutenant Ross was hap-

pily married and served as a sailplane instructor pilot be-

fore moving to Sheppard AFB, Texas for the Euro-NATO

Joint Jet Pilot Training Program (ENJJPT). After completing Introduction to Fighter

Fundamentals (IFF) at Columbus AFB, Missouri, and a transition course at Tyndall

AFB, Florida, he served as a combat F-15C pilot based at Kadena AFB, Japan.

Lieutenant Colonel Ross returned to Sheppard AFB and was recognized as the

outstanding instructor for two pilot training classes before entering the AFIT/Test

Pilot School joint program, in Dayton, Ohio, and Edwards AFB, California, respec-

tively. He completed both programs as a distinguished graduate, and his thesis work

in automated aerial refueling included the first ever fully autonomous close formation

flight, winning the AFIT Commandant’s and Dean’s Awards for best thesis and the

Air Force Association’s national Von Karman Award for his contribution to science.

Lieutenant Colonel Ross most recently served at Eglin AFB, Florida, as a test

pilot for many programs on the F-15C and F-15E before returning to Dayton for his

Ph.D. He is a senior pilot with over 1900 flying hours in over 45 civilian and military

aircraft types, and will return to Edwards AFB as a Test Pilot School Instructor.

Without comparison, his greatest blessings in life are his wife and five wonderful

children who fill his days with joy and laughter.

221

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

16–09–2011 Doctoral Dissertation Sep 2008 — Sep 2011

Stochastic Real-Time Optimal Control: A Pseudospectral Approach for
Bearing-Only Trajectory Optimization

11Y270

Ross, Steven M., LtCol, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/DS/ENY/11-24

Air Force Research Laboratory, Air Vehicles Directorate
Attn: Gregory H. Parker
24B 2145 Fifth Street
WPAFB, OH 45433
(937)255-7550 Gregory.Parker@wpafb.af.mil

AFRL/RB

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States

A method is presented to couple and solve the optimal control and the optimal estimation problems
simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation
without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and
the dual control problem is developed, constraining polynomial approximations of the Fisher Information Matrix to
provide an information gradient and allow prescription of the level of future estimation certainty required for mission
accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed with recursive updating
of the target estimate with an Unscented Kalman Filter and the optimal path with Radau pseudospectral collocation
methods and sequential quadratic programming. The basic real-time optimal control (RTOC) structure is investigated,
specifically addressing limitations of current techniques in this area that lose error integration. The resulting guidance
method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or
small UAVs seeking to land on power lines for energy harvesting. Methods and tools required for implementation are
developed, including variable calculation timing and tip-tail blending for potential discontinuities. Validation is
accomplished with simulation and flight test, autonomously landing a quadrotor helicopter on a wire.

RTOC, Real-Time Optimal Control, Bearing-only, Trajectory Optimization, UAV, SUAS, Power Line, Pseudospectral,
Quadrotor, Energy Harvesting

U U U UU 247

Dr. Richard G. Cobb (ENY)

(937) 255-3636, x4559; richard.cobb@afit.edu

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Bearing-only Target Analysis
	Power Harvesting
	Important Semantics
	Assumptions
	Project Summary
	Contributions
	Document Outline
	Related Work
	Optimal Control
	Limitations of Optimal Control
	Direct Methods
	Transcription and Collocation
	Pseudospectral Methods
	Real-Time Implementation Methods
	Trajectory Optimization
	Localization and Bearing-only Tracking
	Dual Control Theory
	Trajectory Optimization Shortcomings
	Problem Description and Modeling
	Segmentation of Control Modes
	Modeling for the Relative Position Problem
	Transformation to Polar Coordinates

	Bearing-only Estimation
	The Hybrid EKF
	Hybrid Filter Algorithm
	Unscented Kalman Filter
	Simultaneous Solution of the Optimal Control and Estimation Problems
	Development of the Fisher Information Matrix from the Cramér-Rao Lower Bound
	Directional Compression and One-Step Ahead Analysis
	A New Approach
	Suboptimal Final Covariance Shooting Method
	Single-Shot Simultaneous Control and Estimation
	Information States and Associated Dynamics

	Optimal Control Problem Formulation
	Avoidance of the Singular Arc
	Constraints
	Boundary Conditions and Formulation of Final Covariance Constraints
	RTOC Structure—Requirement for Integrated Error Feedback
	Fast Recursive Open-Loop Control vs. Closed-Loop Feedback
	Lack of Error Integration in Instantaneous Optimal Solutions
	Case Study A: Simplified Aircraft Course Planning
	Addition of Stochastic Disturbances
	Error Integration through the Addition of Noise Estimates into the System Dynamics

	Case Study B: Real-Time Aircraft Attack Planning
	Pop-up SAM Avoidance Results, No Wind Condition
	Effect of Non-Zero Mean or Time Correlated Stochastic Disturbances
	Integration of Path Error

	Recommended RTOC Structure
	RTOC Algorithm and Implementation Tools
	RTOC Algorithm
	Initial Condition Validity
	Variable Calculation Time
	Correction Blending of Path Ends
	Radau Pseudospectral Method
	Solving the NLP
	Adaptive Grid Refinement
	Quadrotor Vehicle Description and Flight Control Development
	Vehicle Description
	Autopilot Overview

	Flight Control Modifications
	Simulation
	Vertical Control Channel
	Horizontal Control Channels
	Heading Control Channel
	Automated Flight
	System Identification

	Results and Analysis
	Simulation Results
	Local Minima
	Timing and Accuracy

	Flight Test Results
	Flight Test Run #1
	Flight Test Run #2

	Conclusions and Future Work
	Conclusions
	Future Work
	Summary

	Appendix Quadrotor Flight Control Model
	Simulink Model

	Appendix Selected Matlab"472 Code
	Main Path Planner Loop
	Trajectory Planner GPOPS Interface

	Bibliography

	Index
	Vita

